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The NMR spectra of orientationally ordered molecules increases rapidly in complexity with the number of coupled nuclear spins. For example,
the spectrum of n-pentane as solute in a nematic liquid-crystal solvent (12 coupled proton spins) consists of roughly 20,000 transitions, many
of which overlap. The analysis of such complicated spectra by line-assignment techniques is fraught with difficulty. However, application of the
ideas of genetic evolution via evolutionary strategies makes possible the analysis of spectra, which are quite probably not solvable by ordinary
methods. In particular, the covariance matrix adaptation evolution strategy uses the idea of mutation and the results of previous trials to give
solutions to quite complicated spectra. The techniques described herein have already led to solution of NMR spectra that were not achieved
with older techniques, and show promise for cracking even harder problems in the future. An important aspect with NMR spectra of solutes
in liquid-crystal solvents is the presence of a broad underlying baseline from the solvent protons. An automatic baseline removal method is
described.
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Introduction
NMR of molecules in the liquid phase has developed over the
years into a unique tool for the characterization of chemical
species. Despite its limited sensitivity, the technique has proved
invaluable and is used extensively. The reasons for its success are
threefold. First, the Hamiltonian describing the NMR spectrum
in the isotropic liquid phase is simple, well-known, and given
by1,2

Ĥ = − BZ

2π

∑
i

γi(1 − σ iso
i )Îi,Z +

∑
i<j

J iso
ij Îi · Îj (1)

with BZ the external magnetic field in the Z direction, γi the
magnetogyric ratio of nucleus i, σ iso

i the isotropic part of the
chemical shielding of nucleus i, and J iso

ij the isotropic part
of the indirect spin–spin coupling between nuclei i and j.
The operators Î signify nuclear angular momentum operators.
Second, this simple Hamiltonian is an excellent predictor for
NMR spectra, because the reservoir of nuclear spins is very
weakly coupled to spatial coordinates, making perturbations to
the Hamiltonian negligible. Third, although indirect couplings
in principle exist between any pair of nuclei, the magnitudes of
these couplings decrease rapidly with distance. Usually, indirect
couplings over four or more bonds are much smaller than
typical NMR line widths that result from relaxation processes
in the liquid.

When solutes are dissolved in liquid-crystal solvents that
have cylindrically symmetric phases that are apolar, the molec-
ular tumbling of the solute molecules is no longer isotropic.
In addition to terms that occur in the isotropic Hamiltonian,
a number of new anisotropic terms arise, and, in the limit of
high magnetic field, the Hamiltonian becomes3–5:

Ĥ = − BZ

2π

∑
i

γi(1 − σ iso
i − σ aniso

i ) Îi,Z

+
∑
i<j

J iso
ij Îi · Îj

+
∑
i<j

(2Daniso
ij + Janiso

ij )

[
Îi,Z Îj,Z − 1

4

(
Îi,+ Îj,− + Îi,− Îj,+

)]

+
∑

i

qaniso
i

4Ii (2Ii − 1)
(3Î2

i,Z − Î2
i ) (2)

Here, σ aniso
i is the anisotropic contribution to the chemical

shielding, Janiso
ij the anisotropic contribution to the indirect spin

coupling between nuclei i and j, and Daniso
ij the anisotropic direct

dipolar spin coupling between nuclei i and j. The final term
with qaniso

i signifies the quadrupolar coupling contributions
for nuclei i with spin I ≥ 1. In this article, we shall focus
on 1H magnetic nuclei. The indirect coupling between two
1H nuclei is to a very good approximation isotropic, and

Volume 2, 2013 © 2013 John Wiley & Sons, Ltd. 437



WL Meerts et al.

the anisotropic contribution is therefore commonly neglected.
Also, the quadrupolar coupling vanishes for 1H nuclei.

A particularly challenging situation arises with molecules
that undergo conformational change. Usually, the timescale for
conformational change is much faster than the NMR timescale.
Hence, NMR spectra are observed that are an average over all
conformations. In particular, the observed dipolar couplings
can be expressed as6–8

Dij =
∑

n

pn
∑

k,l

dn
kl,ijS

n
kl (3)

where we drop the superscript aniso, where pn is the probability
of conformation n, and dn

kl,ij is given by

dn
kl,ij = −hγiγj

4π2
(cos θn

ij,k cos θn
ij,l/r3

n,ij) (4)

with cos θn
ij,k the cosine of the angle between the ij direction in

the molecule in conformation n, and k a conformer-fixed axis.

Sn
kl =

〈
3

2
cos θn

k,Z cos θn
l,Z − 1

2
δkl

〉
(5)

are the Saupe order parameters for each conformation n, where
cos θn

k,Z is the cosine of the angle between the molecular k
direction in conformation n and the space-fixed Z direction
of the external magnetic field BZ . There is a maximum of five
independent order parameters for every conformation, and
molecular symmetry can reduce this number.

So far, we have assumed that the direction of the mesogen
director is parallel to that of the external magnetic field, as is
the case in most nematics. When there is an angle Ω between
the director and the magnetic field, there is a factor P2(cos Ω)
that scales the dipolar couplings in equation 3.3

A crucial issue in NMR liquid-crystal spectroscopy is how
to describe the average degree of the orientational order of a
molecule that undergoes interchange among several symmetry-
unrelated conformations. Initially, attempts were made to

assume an average molecule, which then possesses a single set
of at most five orientational order parameters. Unfortunately,
this idea has been shown to be fallacious, because every con-
formation requires its own set of at most five orientational
order parameters.6–8 For a molecule with a significant num-
ber of conformations, the number of a priori unknown order
parameters therefore can be quite large. This situation presents
a serious bottleneck for the analysis of complex spectra.

In contrast to isotropic NMR spectra, spectra of solutes with
a large number of spins dissolved in liquid crystals are usually
extremely complicated as shown in Figure 1 for the series of
solutes from methane to n-pentane.9–14 The reason is that the
anisotropic direct dipolar couplings that exist between any pair
of nuclei tend to be much larger than the NMR line widths,
thus causing spectra with many transitions that are observed
separately. The analysis of such often extremely complex spectra
is the topic of this article. Although the theory developed so
far equally holds for mesogenic molecules themselves, in this
article we shall focus on the analysis of the often extremely
complex spectra of solutes in cylindrically symmetric apolar
anisotropic phases.

The analysis of NMR spectra of solutes in both isotropic
and nematic phases has a long history. For simple solutes, the
1H NMR spectrum can be easily obtained by calculating the
matrix elements of the corresponding Hamiltonian, followed
by matrix diagonalization to calculate the nuclear spin energy
levels. By computing the transition probabilities between all
energy levels, a theoretical spectrum is obtained. Comparing
the theoretical spectrum with the experimental one, transitions
can be assigned and values for chemical shieldings as well
as indirect and direct coupling constants can be extracted
by hand.1,2 For somewhat larger solutes, molecular symmetry
can be employed to block out and simplify the Hamiltonian
matrix and to calculate the 1H NMR spectrum as before.1,2

For larger solutes without symmetry, this analytical approach
fails. One then has to rely on computer methods to calculate

CH4

CH3CH3

CH3CH2CH3

CH3CH2CH2CH3

CH3CH2CH2CH2CH3

Figure 1. 1H NMR spectra of orientationally ordered methane, ethane, propane, n-butane, and n-pentane in nematic solvents
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a trial spectrum from a set of guessed spectral parameters.
This trial spectrum is then compared to the experimental one,
and an attempt is made to assign transitions. Next, with least-
squares methods the spectral parameters are varied to obtain
the best correspondence between the calculated and measured
spectra. When the initial assignment is correct, this procedure
converges. If not, new starting parameters must be tried and
the procedure repeated.15 For solutes with up to approximately
eight spins, the spectra increase in complexity with the number
of spins, and this method becomes extremely time consuming.
Many months of calculating and assigning trial spectra were
usually invested, and spectral analysis at that level was a true
art, which required great experience and expertise. For solutes
with eight or more spins, the number of transitions increases
tremendously (about 20,000 for n-pentane with 12 1H spins13),
many lines lie close together, and the assignment problem
looks insurmountable. Despite the large efforts in many NMR
laboratories put into measuring and analyzing very complex
spectra of solutes with many spins, it seemed that the range of
applicability of NMR liquid-crystal spectroscopy had reached
its limit.

In addition to attempts to analyze complex single-quantum
spectra, various experimental means of simplifying such spectra
have been developed. We mention selective deuteration in com-
bination with heteronuclear decoupling, multiple-quantum
(MQ)-NMR, and the use of ‘magic mixtures’ in combina-
tion with simple phenomenological models to estimate order
parameters. All these methods have in common that they
require considerable expertise and sophistication, and are very
time consuming.7,8,16 A detailed discussion of these methods is
outside the scope of this article.

Since the days that computers were employed to aid in
understanding NMR spectra, the concept of automated spec-
tral analysis has been explored. Ideally, an automated computer
algorithm should search the parameter space efficiently in order
to find unique values for the spectral parameters that repro-
duce an observed NMR spectrum without or with minimal
operator intervention. Such an automated approach was first
suggested by Diehl et al.17,18 In a similar spirit, Stephenson
and Binsch19 developed a basic algorithm for isotropic NMR
spectra that relies on a matrix method derived from a gen-
eral formulation of the least-squares problem. This approach
was implemented in the algorithm DAVINS (direct analysis of
very intricate nuclear magnetic resonance spectra)20 and was
reasonably successful. Subsequently, the more challenging task
of applying automated analysis to the NMR spectra of solutes
in nematic solvents was undertaken. The program DANSOM
(direct analysis of nuclear magnetic resonance spectra of ori-
ented molecules) was first used in the analysis of spectra of a
number of alkyl halides21 and cyclopentene.22 In a review arti-
cle published in 2007, the work carried out with DAVINS and
DANSOM was summarized.23 However, the method met with
serious difficulties, because background corrections proved
troublesome and, for more complicated cases, operator inter-
vention was often required. Later, the Cosenza group in Italy
achieved some notable successes, despite the need for signif-
icant operator intervention to avoid the problem of getting

trapped in local minima.24,25 In an article published in 2007,
the strategies employed in spectral analysis were reviewed.26

In a separate development, the use of a genetic algorithm
(GA) for the analysis of NMR spectra in integrated form
of solutes in liquid crystals was reported in a short paper
that gave little detail.27 Apparently, trapping in local minima
presented problems. In a follow-up paper,28 it was made clear
that GA fitting methods were only employed to obtain a
first approximation to the NMR spectrum. The parameters
associated with the best GA fit calculated were then used as a
starting point for the assignment of individual lines, followed
by the more conventional least-squares refinement. Apart from
these two papers (and those from our own work, discussed
later), we have found no further applications of the GA method
in the literature.

In recent years, we have exploited the enormous advances
in computer technology and parallel processing, as well as
recent developments in the field of GAs and evolution strate-
gies (ESs), to develop robust new approaches toward solving
very complex spectra of larger solutes dissolved in nematic
solvents.12–14,29,30 Problems previously encountered with less
sophisticated methods such as getting trapped in local minima
without ever reaching the desired global minimum, prob-
lems with accounting for spectral background, and the need
for frequent operator intervention can now be efficiently cir-
cumvented. Our routine essentially represents an efficient and
intelligent search of an extensive parameter space.

To limit the search range and to speed up the convergence
process, ideally one should start with reasonable guesses of
shielding parameters and of direct dipolar couplings. Alter-
natively, guesses of order parameters in combination with
reasonable estimates of molecular geometries (and conformer
probabilities for flexible molecules) can be used to generate
the guesses of direct dipolar couplings. Indirect couplings are
usually known well enough from NMR in the isotropic phase.
Guesses for order parameters for each conformer can often
be obtained from simple phenomenological models.7,8 Direct
dipolar couplings can be estimated from a relatively crude
knowledge of the geometries of these conformations and by
averaging over all conformations.6,12,13 Even in the absence of
reasonable initial guesses for the parameters, convergence is
still often reached and excellent final fits are obtained. It must
be noted that the spectral fitting is facilitated by the acquisition
of high-quality NMR spectra with narrow lines throughout; in
order to achieve this, attention to the removal of concentra-
tion and temperature gradients (which lead to inhomogeneous
broadening of lines in the wings of the spectra) is important.

In this article, we shall discuss modern ESs and show how
the application of these novel methods to liquid-crystal NMR
is eminently successful and has given a completely new impetus
to an old field of research.

Theory of Evolutionary Algorithms
In the past decades, computational tools have been developed
that are able to handle complex multiparameter optimizations
intelligently and within an acceptable investment in computer
time. The use of evolutionary algorithms (EAs) for solving
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Figure 2. Schematics of the GA process

such highly nonlinear and complex processes in science and
engineering has become widespread. Although they are con-
ceptually simple, their ability in avoiding local optima and
instead finding the global optimum is remarkable and makes
them suitable to handle complex optimization problems.

EAs represent a set of general-purpose probabilistic search
methods based on natural evolution. These algorithms mimic
the concepts of natural reproduction and selection processes.
The basic idea in EAs is to create an artificial environment that
encodes the search problem into biology-like terms.

From a spectroscopic point of view, the EA approach repro-
duces this behavior to fit an experimental spectrum with a
model based upon transitions between spin energy levels cal-
culated as eigenvalues of the Hamiltonian such as Ĥ given by
equation (2). Each of the molecular parameters in Ĥ can be
thought of as a gene, encoded in a binary or real type. The
vector of all genes, which contains all molecular parameters, is
called a chromosome.

Three main different EAs have been developed over the years:
the GA,31 the ES,32 and the evolutionary programming.33

For the automatic assignment and analysis of high-resolution
NMR spectra, we have initially used the GA.34 However, lately
we have been mainly using an ES in our procedures.

The Genetic Algorithm

A detailed description of the GA used in the automatic assign-
ment and fitting of the spectra described in this article can be
found in the literature.34

The molecular parameters are encoded in binary or real
type, each parameter to be optimized representing a gene. As
mentioned previously, the vector of all genes, which contains all
molecular parameters, is called a chromosome. In an initial step,
the values of all parameters are set to random values between
lower and upper limits, which are chosen by the user. The

quality of the solutions then is evaluated by a fitness function.
A flowchart of the procedure is shown in Figure 2.

One optimization cycle, including evaluation of the fitness
of all solutions, is called a generation. Pairs of chromosomes are
selected for reproduction, and their information is combined
via a crossover process. Since crossover combines information
from the parent generations, it basically explores the fitness
landscape. The value of a small number of bits is changed
randomly by a mutation operator. Mutation can be viewed as
exploration of the fitness surface. The best solutions within a
generation are excluded from mutation. This elitism prevents
already good solutions from being degraded. Mutation prevents
the calculation from being trapped in local minima, as is often
the case with more conventional fitting routines.

The Evolution Strategy

The ES algorithm starts with one or more parents. A parent
is a trial solution that corresponds to a set of parameters
like in the GA. From this parent, an offspring of multiple
children is generated. The quality or performance of these
children is checked and, depending on the strategy, the next
parent is generated. There are several different strategies for
the generation of the offspring as well as the next parent. For a
more detailed description, see the literature.32

The offspring is created from the parents in a mutative
step-size control. A drawback of the standard ES is that the
mutations of the decision and the strategy parameters are
subject to independent random processes. If, for example, an
individual with a large step size undergoes only a very small
change in the decision parameters and this small change turns
out to yield a high fitness, the large step size will be passed on to
the next generation. As a result, the fitness in the next mutations
may worsen. This problem is resolved in derandomized (DR)
algorithms, which make the random mutations in decision
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(a) (b)

(c) (d)

Global minimum
Parent
Trial solution
Best offspring

Figure 3. The first four generations of an evolution strategy: (a) An initial population is generated, and the best offspring is used as the next parent. (b)
The offspring is spread over a larger area in the second generation because of the relatively large step made in the previous generation. The vector from
the parent to the best offspring (dashed line) is combined with the (shortened) mutation vector of the last generation (dotted line) to generate the new
parent (solid line). (c) Owing to the correlation between the past two mutations, the search range has been extended again in the general direction of both
mutations while it has been limited in the perpendicular direction. The best offspring is now a local minimum. The memory effect of the evolutionary
algorithm, which incorporates past mutation vectors into the calculation of the next parent, helps to overcome the local minimum, and the next parent is
still closer to the global minimum. (d) The barrier between the local and global minima has been overcome, and the optimization is progressing toward
the global minimum. (Reprinted with permission from W.L. Meerts, C.A. de Lange, A.C.J. Weber and E.E. Burnell, J. Chem. Phys., 130, 044504, (2009).
Copyright 2009, American Institute of Physics)

and strategy parameters dependent on each other. This idea
was implemented initially as DR1 and soon improved by the
concept of accumulated information,35 which will be called
DR2. The history of the optimization is recorded, and the
evolution of the mutation ellipsoid is partially governed by past
successful mutations.

A further improvement was achieved by Hansen and
Ostenmeier36 with the covariance matrix adaptation evolution
strategy (CMA-ES). It turns out to be a particularly reliable and
highly competitive EA for local optimization and, surprisingly
at first sight, also for global optimization.37 The CMA-ES does
not leave the choice of strategy parameters open to the user
–only the population size can be set. Finding good strategy
parameters is considered to be part of the algorithm design.

Figure 3 depicts the first four generations of an ES and
demonstrates the effect of the chosen strategy. In general, the
ESs converge faster and are more robust than the GA.

The Fitness Function for the Analysis of Spectra

A proper choice of the fitness function is of vital importance for
the success of the EA convergence. In the literature,38 a fitness
function Ffg was defined as

Ffg = (f , g)

‖f ‖‖g‖ (6)

Here, f and g are the vector representations of the experimental
and calculated spectrum, respectively. The inner product (f , g)

is defined with the metric W , which has the matrix elements

Wij = w(|j − i|) = w(r) as

(f , g) = f TWg, (7)

and the norm of f as ‖f ‖ = √
(f , f ); similar for g. For w(r), a

triangle function was used39 with a width of the base of Δw
given by

w(r) =
{

1 − |r|/ (
1
2 Δw

)
for|r| < 1

2 Δw

0 otherwise.
(8)

The above-defined fitness function is able to smooth in a
controlled way the fitness landscape and therefore allows the
EA to locate the global minimum. The width of the function
w(r) critically determines the ability of the EA to converge
to the global minimum and also the speed of convergence.
The smoothing of the fitness landscape allows sensing regions
far from the minimum. The EA convergence is obtained in a
well-defined procedure. At first, the function w(r) should be
chosen relatively broad: Δw ≈ 15 − 20 times the line widths
of an individual transition in the spectrum. In this way, a first
set of parameters is obtained, which still has to be refined.
This is done by decreasing Δw and narrowing the limits of
the parameter space to be searched in the fit. Decreasing Δw
improves the accuracy of the molecular parameters obtained
from the fit, while narrowing the parameter space leads to an
improved sampling in the region of the minimum. This, of
course, is critical in the procedure, but can, in most cases, be
done automatically. In a final calculation, Δw is set to zero.
Usually, full EA convergence to the best set of parameters is
achieved by narrowing Δw to zero in one or two steps.
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Examples of Application of Evolutionary
Algorithms to Extract NMR Parameters from
Spectra of Orientationally Ordered Species
The successful application of ESs to the analysis of rather
complicated spectra of orientationally ordered solutes in liquid-
crystal environments has opened the door to problems ranging
from those that were very time consuming to those that were
seemingly intractable. We now look at some examples.

The first test of the method was on the nine-spin system
p-bromobiphenyl29 (Figure 4). Earlier versions of automatic
spectral analysis programs that were applied to similarly com-
plicated spectra seemed to require operator intervention in
order to achieve a successful fitting to the experimental spectra.
The important advance with this first test is that convergence
between the experimental and calculated spectra is achieved
with no operator intervention. In the case of p-bromobiphenyl,
an initial GA was run by assuming a molecular structure and

(a) Experiment

(d)

(e)

–10 000 –9000

Experiment

(b)

(c)(c)
10 000–10 000 –5000 50000

Simulation

Figure 4. 1H NMR spectrum of p-bromo-biphenyl dissolved in ‘magic mixture.’ The experimental spectrum (a) is compared with the final fit obtained
by varying 15 dipolar couplings and 5 chemical shifts (b). In the next frames, the spectrum is enlarged to show the fit obtained by varying 2 S-parameters,
5 chemical shifts, and the dihedral angle (c), the experimental spectrum (d), and the fit obtained by varying 15 dipolar couplings and 5 chemical shifts (e).
All horizontal scales are in hertz. (Reprinted from Chem. Phys. Lett., 441, W.L. Meerts, C.A. de Lange, A.C.J. Weber and E.E. Burnell, A simple two-step
automatic assignment procedure for complicated NMR spectra of solutes in liquid crystals using genetic algorithms, 342–346, Copyright (2007), with
permission from Elsevier.)
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then fitting the spectrum to the order parameters and chemi-
cal shifts. The result (displayed in Figure 4c) demonstrates the
good agreement between the experimental and fitted spectrum.
A much superior fit (Figure 4e) is obtained when the fit is to
the actual spectral parameters, i.e., dipolar couplings instead
of order parameters. However, the initial step (with only eight
adjustable parameters) provided excellent starting values for
the dipolar couplings, which expedited the final fitting to these
couplings. This first fitting was with GA, and in many later cases
using CMA-ES, the initial step of fitting to order parameters
(rather than dipolar couplings) was no longer needed. In the
case of flexible solutes (such as n-butane and n-pentane), the
number of independent dipolar couplings equals or is less than
the number of independent order parameters plus conformer
probabilities, and the fitting was carried out to the dipolar
couplings themselves.

The initial GA fitting was also applied to two other solutes,
namely azulene and biphenylene, each of which is an eight-spin
problem.40 While these molecules had been studied earlier,
the GA demonstrated the ease of the spectral analysis of
these solutes in three different liquid-crystal solvents. The
dipolar couplings obtained were later used to investigate non-
rigid effects on the dipolar couplings and the potential errors
introduced when these interactions (between vibrational and
reorientational motions) were neglected. A prescription for
estimating the error was presented, and it was demonstrated
that, when the error was accounted for in a realistic manner,
the structural parameters obtained for both solutes were the

same in all three liquid-crystal solvents. Such agreement among
solvents is not always the case when the nonrigid effects are
ignored. Such discrepancies among solvents have led in the
past to claims of distortion of the solute by the liquid-crystal
environment.41 Our experiments show that there is no need to
invoke such molecular distortions.

Another example where the ability of the CMA-ES to simplify
spectral analysis is exploited is in the investigation of multiple
solutes in the same sample tube.42,43 Such experiments are
desirable when investigating the anisotropic intermolecular
forces present in orientationally ordered liquids, as they ensure
that all solutes experience precisely identical conditions. When
solutes are studied in separate sample tubes, the effect of
differing concentrations (and other experimental conditions)
can lead to differences in liquid-crystal order parameter among
samples, making it difficult to compare accurately results for
the different solutes. Hence, the CMA-ES was easily adapted for
the analysis of the spectrum that results from multiple solutes,
and an example is shown in Figure 5.

The use of CMA-ES with multiple solutes in the same sample
has facilitated the investigation of liquid crystals that experience
both a higher temperature nematic phase and a lower temper-
ature smectic A phase (and in one instance an even lower
temperature reentrant nematic phase44); these experiments
have allowed the determination of the solute smectic order
parameters (τ , a measure of the preference for a solute to place
itself in some particular region of the smectic layers, or to be
evenly distributed if τ = 0) and the couplingκ between nematic

CI

CI

CI
CH3

CH3
CI
CI

O S

y

x

Frequency / Hz

–1000 0 1000 2000

(a)

(b)

Figure 5. (a) The experimental 400 MHz NMR spectrum and (b) the spectrum found using the CMA-ES. The peaks of the solutes are interspersed with
one another. (Reprinted from Chem. Phys. Lett., 476, A.C.J. Weber, X. Yang, R.Y. Dong, W.L. Meerts and E.E. Burnell, Solute order parameters in liquid
crystals from NMR spectra solved with evolutionary algorithms: Application of double Maier–Saupe Kobayashi–McMillan theory, 116–119, Copyright
(2009), with permission from Elsevier)
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orientational ordering and smectic layering potentials (the
nematic potential can vary with position in the smectic layer).

Perhaps the greatest success of the CMA-ES is the tremen-
dous advance made possible in the analysis of solutes that
can exist in several symmetry-unrelated conformers. To date,
studies of n-butane (10 spins with 3 conformers, 2 of which
are symmetry-unrelated),12 and n-pentane (12 spins with 9
conformers, 4 of which are symmetry-unrelated)14 have been
carried out, while extension to n-hexane (14 spins with 27
conformers, 10 of which are symmetry-unrelated) may also be
possible.

n-Butane was originally analyzed in one liquid-crystal sol-
vent in a two-step process.45 First, MQ-NMR spectra were
accumulated and analyzed to provide rough values of the
spectral parameters. The high-order multiple-quantum spectra
contain far fewer lines than the single-quantum high-resolution
spectra that are required to obtain very accurate values of the
spectral parameters –for technical reasons the lines associ-
ated with the multiple-quantum transitions are broad, and
the intensities depend strongly on the values of the spectral
parameters used for the spectral calculation. For n-butane (as
well as several other multispin solutes, including biphenylene46

and biphenyl47), the high-order MQ spectra yielded to analysis
and provided excellent starting points for analysis of the high-
resolution single-quantum (normal) spectra. This process was
tedious and time consuming, and has, for example, never been
applied to n-pentane or n-hexane.

Spectra of n-butane were readily analyzed by the original GA
as long as the parameter ranges set in the program included the
actual values of the dipolar couplings and chemical shieldings;
otherwise the GA failed.12 When the initial parameters were
chosen and ranges set by examining dipolar couplings that were
calculated using model potentials to estimate values of order
parameters (three for the gauche and three for the trans con-
former), the spectrum was fitted ‘over lunch.’ Although it is in
principle possible to use very large parameter search ranges, the
time taken to achieve convergence increases dramatically when
large ranges are chosen, and it is certainly wise to ‘help’ the
analysis procedure by paying attention to reasonable starting
values along with their search ranges before embarking on a
trial. In the case of n-pentane, where the 4 symmetry-unrelated
conformers require a total of 13 order parameters as well as
relative probabilities of all 4 conformers, estimating values for
all these parameters presents a problem. Indeed, in this case
there are only 11 independent dipolar couplings, so a search
using the dipolar couplings involves fewer parameters than one
connected with order parameters and conformer probabilities.
Initial values of dipolar couplings and their ranges were chosen
based on a model potential that rationalizes the order param-
eters of a host of solutes in a special liquid-crystal mixture
for which spectra of di-deuterium indicate the absence of an
average electric field gradient. Results for solutes in this special
‘magic mixture’ are consistent with model potentials for the
main interaction leading to solute orientational order being
that due to short-range size and shape interactions. Although
the liquid crystal used for this first study was not a magic mix-
ture, it has been argued that hydrocarbons such as n-pentane
are ‘magic solutes’ and that electrostatic interactions (such

as those between molecular quadrupoles and mean solvent
electric field gradients, or between molecular polarizability
anisotropies and average solvent electric fields squared) are
of minor importance and the dominant ordering mechanism
involves solute short-range size and shape interactions.48 Con-
former probabilities were calculated by assuming a value for the
energy difference between trans and gauche conformers, Etg .
Dipolar coupling ranges were then set by examining the change
in dipolar coupling with change in anisotropic intermolecular
potential parameters and of changes in Etg . Ranges were set by
comparing the overall appearance of the calculated spectrum
with the experimental one. The important point here is that, for
these flexible solutes, some couplings have a large conformer
dependence, and sometimes the experimental coupling is small
while the component conformer contributions are large, but
of opposite sign. Only when such couplings are given a large
range does the GA converge. For n-pentane, only when CMA-
ES was employed with carefully chosen starting parameters and
parameter ranges was a fit obtained, and it was achieved very
quickly14 (Figure 6).

In this case, there was a small problem with baseline for part
of the spectrum. After the application of a simple baseline-
correction algorithm, the entire spectrum could be used in the
fitting, and an excellent fit of the calculated spectrum to the
experimental one was achieved giving very precise values of the
dipolar couplings, see Figure 4 of the corresponding paper14

and discussion therein.
Because of the ease of analysis with CMA-ES, it was pos-

sible to investigate n-butane (and n-pentane, unpublished)
as a function of temperature in several different liquid-crystal
solvents.13,49 Changing the temperature changes the Boltzmann
factor and hence conformer probabilities, thereby providing
the key to the investigation of the effect of the anisotropic
environment on these probabilities. Our recent analysis of this
problem exploits the finding that, in a given liquid-crystal
solvent, the ratios of dipolar couplings in ethane to those in
propane are constant over a large temperature range; if we
now assume that the same holds for ratios of n-butane con-
former dipolar couplings to ethane dipolar couplings, we have
a way of fixing the temperature dependence of these n-butane
conformer couplings and are thus able to extract conformer
probabilities. In particular, we obtain separate estimates for
the isotropic intra- and intermolecular conformer potentials
and their effect on conformer probabilities, as well as the
contribution to conformer probabilities from the anisotropic
intermolecular potential.

In recent work (unpublished), we have used CMA-ES to ana-
lyze the spectra of n-butane, propane, and ethane present in the
same sample tube, thereby providing a more accurate estimate
of the n-butane conformer couplings. The ability of CMA-
ES to handle three very complicated spectra simultaneously
demonstrates the power of this spectral analysis tool.

Even with the power of CMA-ES, the selection of reason-
able starting parameters is still key to solving a complicated
spectrum in a reasonable time. One approach for choosing
the starting parameters is to use computer simulation of the
liquid-crystal/solute system. To this end, molecular dynamics
(MD) simulations of n-pentane in the nematic phase of 5CB
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(a) Experiment

(b) Simulation
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Figure 6. 1H NMR spectrum of n-pentane dissolved in the nematic liquid-crystalline solvent Merck ZLI 1132. The experimental spectrum (a) is compared
with the final fit obtained by varying 11 dipolar couplings, 9 indirect spin–spin couplings, and 3 chemical shieldings (b). In the next frames, the spectrum
is enlarged to show the experimental spectrum (d) and the same fit as above (c). All horizontal scales are in hertz. The 11 indirect spin–spin couplings
were varied only in the final fitting procedure; in earlier iterations they were given their isotropic values. (Reprinted with permission from W.L. Meerts,
C.A. de Lange, A.C.J. Weber and E.E. Burnell, J. Chem. Phys., 130, 044504, (2009). Copyright 2009, American Institute of Physics)

(4-n-pentyl-4′-cyanobiphenyl) were carried out as a function
of temperature.50 The 2000 molecules in the simulated sam-
ple were kept at the same relative concentration as the NMR
sample, which was also studied as a function of temperature
spanning the nematic phase. The simulated and experimental
nematic-to-isotropic phase transitions were essentially coinci-
dent. The temperature and chain-position dependence of the
simulated n-pentane order parameters agreed with expecta-
tion. However, for a given temperature, the simulated and
experimental spectra differed in the overall width (Figure 7).
In order to proceed, the NMR result at 283.5 K and the MD
result at 295 K were chosen for analysis, these being the spec-
tra that showed the best agreement with respect to overall
widths.

Comparison of the dipolar couplings from MD and NMR
spectra gave a root-mean-square (RMS) difference of 45 Hz.
This is an impressive starting point for CMA-ES analysis,

especially considering that the only ‘fitting parameter’ was
the comparison between experimental and theoretical spectra.
Next, a search range needs to be defined. For larger dipolar
couplings, a range of ±15% is selected, while for smaller
couplings the range is set to ±50 Hz. This value is chosen
because these small couplings often result from averaging
among different conformers that have relatively large couplings
of opposite signs. Upon defining the problem in such a way,
quick convergence is obtained and spectral parameters of the
experimental spectrum involving over 20 000 transitions are
obtained.

The success of the MD predictions for n-pentane raises the
question whether this process can be used to solve problems
of still greater complexity. To this end, the CMA-ES has been
tested to see whether convergence can be obtained on an
artificial n-hexane spectrum involving 188 000 transitions with
search ranges similar to those used in the case of n-pentane.
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NMR 273.5 K

NMR 283.5 K

NMR 288.5 K

NMR 293.5 K

NMR 298.5 K
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NMR 278.5 K

Figure 7. (a) Experimental and (b) calculated from MD simulations spectra of n-pentane in 5CB. The intense lines in the outer regions of the NMR
spectra arise from an unknown impurity in the 5CB, and the other three intense lines are the triplet from 1,3,5-trichlorobenzene that was added as an
orientational reference. (Reprinted with permission from A.C.J. Weber, A. Pizzirusso, L. Muccioli, C. Zannoni, W.L. Meerts, C.A. de Lange and E.E.
Burnell, J. Chem. Phys., 136, 174506, (2012). Copyright 2012, American Institute of Physics)

Convergence was obtained, indicating the possibility of
extending the CMA-ES to NMR spectra of solutes (such as
n-hexane) that are considerably more complicated than those
investigated so far.

Automatic Baseline Removal in NMR Spectra
Slow baseline fluctuations in NMR spectra of solutes in liquid-
crystal solvents are a well-known problem. For sparse spectra
such as in the upper three spectra of Figure 1, a manual removal
of the background is quite feasible. Furthermore, the baseline
problem mentioned in the previous section can be corrected
with relative ease because the spectra still show a clear baseline.
A non-flat baseline arising from (broad) NMR signals originat-
ing from the solvent and experimental imperfections becomes
more pronounced for weak NMR spectra. Furthermore, if the
number of lines further increases such that overlap of the
transitions occurs, manual removal is no longer possible. The
combination of the above-mentioned problems gave rise to the
need to automatically remove the background originating from
both the solvent and overlapping lines. This was achieved by
removal of a smoothed spectrum from both the experimental
and calculated spectra.

The smoothed experimental spectrum f S = (f S
1 , f S

2 , . . . , f S
N)T

is defined as

f S
i = 1

ns + 1

i+ns/2∑
j=i−ns/2

fj (9)

Here, ns is the number of points over which the smooth-
ing should be performed. The smoothing over the calcu-
lated spectrum g is carried out identically, resulting in gS =
(gS

1 , gS
2 , . . . , gS

N)T :

gS
i = 1

ns + 1

i+ns/2∑
j=i−ns/2

gj (10)

The actual spectrum that is fitted is f R = f − f S against
gR = g − gS, i.e., in equation (6), f and g are replaced by f R

and gR, respectively.
The idea behind this method is that removal of a smoothed

spectrum removes the baseline originating from experimental
sources not present in the calculated spectrum. At the same
time, features in the spectrum that are on top of a background
caused by overlapping transitions become more pronounced.
Hence, in the global fit the local features contribute more
effectively to the fitness. This increases the dynamics of the
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200010000

(d)

(c)

–5000 0 5000

(b)

(a)

Figure 8. Demonstration of automatic baseline removal from an experimental spectrum. To the 1H NMR spectrum of n-pentane from Figure 6 we have
added an artificial baseline (a). Trace (b) shows spectrum (a) after automatic baseline removal by a smoothing over 250 Hz. The two lower traces show (c)
an enlarged section of spectrum (b) compared to the fitted spectrum (d). All horizontal scales are in hertz

fitness function. The effect of automatic background removal
is demonstrated in Figure 8.

Conclusion
NMR spectroscopy of solutes dissolved in liquid-crystal sol-
vents yields highly accurate dipolar couplings, which are very
sensitive to molecular structure and behavior. However, tra-
ditional line-assignment methods become intractable when
considering molecules with more than eight spins, especially
those with low symmetry and those that exist in several
symmetry-unrelated conformers. Such spectra consist of thou-
sands of (often overlapping) transitions. By coupling the ideas
of reproduction and mutation, the GA method circumvents
this problem by simply trying to match a population of poten-
tial solutions to the overall form of the experimental spectrum.
For the more difficult problems, the ES (and CMA-ES), which is
similar in spirit but focuses on mutation and cross-generational
memory, is the key to success.

In this article, we have pointed out some examples where
EAs have either simplified spectral analysis or have made it
possible at all. We probed nematic and smectic liquid-crystal
environments with relatively complicated solutes in the same
sample tube by simply solving for multiple-spin systems simul-
taneously. We demonstrated the fallacy of the notion of solute
structures being distorted by liquid-crystal environments. The
ease of spectral analysis facilitated the investigation of alkanes
and the effect of condensed phases on conformational statistics;
it should be noted that the analysis required the measurement
of n-butane spectra over an 80

◦
temperature range, which were

analyzed in a few days (and would probably have taken months
to solve with older methods).

One important aspect of the use of these strategies is the
need to find reasonable starting values of the parameters. To
this end, we demonstrated the power of MD simulations. Since
the CMA-ES converged on a synthetic n-hexane spectrum with
realistically applicable search ranges, the possibility of spectral
analysis of this very complicated spectrum from a solute with
10 symmetry-unrelated conformers is real.
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