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The EASY-GOING deconvolution (EGdeconv) program is extended to enable fast and automated fitting of
multiple quantum magic angle spinning (MQMAS) spectra guided by evolutionary algorithms. We imple-
mented an analytical crystallite excitation model for spectrum simulation. Currently these efficiencies are
limited to two-pulse and z-filtered 3QMAS spectra of spin 3/2 and 5/2 nuclei, whereas for higher spin-
quantum numbers ideal excitation is assumed. The analytical expressions are explained in full to avoid
ambiguity and facilitate others to use them. The EGdeconv program can fit interaction parameter distri-
butions. It currently includes a Gaussian distribution for the chemical shift and an (extended) Czjzek dis-
tribution for the quadrupolar interaction. We provide three case studies to illustrate EGdeconv’s
capabilities for fitting MQMAS spectra. The EGdeconv program is available as is on our website http://
egdeconv.science.ru.nl for 64-bit Linux operating systems.

� 2013 Published by Elsevier Inc.
1. Introduction

Multi-dimensional NMR of quadrupolar nuclei is a powerful
spectroscopic tool to provide spectral insights into nucleus-envi-
ronment interactions at the molecular level [1]. A good example
and immediate focus of this paper is the routinely used MQMAS
experiment for half-integer quadrupolar nuclei [2,3]. This tech-
nique aids in distinguishing the contribution of the anisotropic part
of the quadrupolar interaction from the isotropic chemical shift
and quadrupolar induced shift in the F2 and F1 spectral dimen-
sions. In practice this is especially useful for the analysis of one-
dimensional spectra that have (strongly) overlapping lines.

Furthermore, NMR is a robust method for studying disordered
materials, e.g., glasses and semiconductors, since it probes the local
atomic environment of NMR active nuclei. This disorder is reflected
in the MQMAS line shapes, and can be translated into interaction
parameter distributions. In the last ten years there has been an
increasing interest to quantify this disorder [4–6]. A model devel-
oped by Czjzek et al. [7] and extended by Le Caër et al. [5,6] is
promising for describing the quadrupolar interaction parameter
distribution resulting from this structural disorder. These models
basically translate the distribution in electric field gradients,
caused implicitly by variations in bond lengths and angles or disor-
der in the higher coordination spheres [8], to a distribution in
interaction parameters.
Elsevier Inc.
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In the NMR community the analysis of MQMAS spectra is cur-
rently facilitated by two programs; DMfit [1] for fitting with a sim-
plified model, assuming ideal crystallite excitation, and SIMPSON
[9] for accurate simulation incorporating all interactions. Regard-
ing spectrum fitting, the computational costs for a single spectrum
of the SIMPSON program are high. The main cause is the costly
numerical integration of the Liouville-Von Neumann equation.
The DMfit program is less broadly applicable, due to the assump-
tion of ideal excitation of all crystallites, but allows spectrum fit-
ting including a Czjzek distribution [4]. Another approach would
be to use the GAMMA framework [10] that provides a versatile
set of functionalities to simulate NMR experiments. It will require
the user to program the NMR experiment and then connect it to a
fitting routine. The presence of a Python interface (PyGAMMA)
should make this procedure relatively easy.

This work aims to aid the quantitative analysis of MQMAS spec-
tra [11] by the introduction of a fast fit-model that includes analyt-
ical crystallite excitation efficiencies. An approach that can be
considered to partially fill the gap between SIMPSON and DMfit.
The excitation efficiency model is available for 3QMAS spectra of
spin 3/2 (7Li, 23Na, 39,41K, 75As, 87Rb, . . .) and 5/2 nuclei (17O, 25Mg,
27Al, 85Rb, . . .). For higher spin quantum numbers an ideal excitation
model is provided. Expressions were derived for a two-pulse and
z-filtered MQMAS experiment in the infinitely fast MAS limit, there-
by excluding simulation of spinning side bands. This approach en-
ables a sub-second calculation of an MQMAS line shape, including
a Gaussian chemical shift distribution, on a regular desktop com-
puter, whereas a single-core SIMPSON simulation exceeds one hour.
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Accounting for a distribution in quadrupolar parameters and multi-
ple chemical sites is consequently relatively inexpensive. Further-
more, we provide parallel computation support and robust
convergence of the fit by offering a choice between three evolution-
ary algorithms [12,13] to guide the fitting. A combination of MQMAS
and one-dimensional NMR data can form a self-consistent data set
for quantitative analysis, both supported by EGdeconv as is shown
in the examples below.

The extension of EGdeconv [12] for MQMAS spectrum fitting
has most functionalities of the one-dimensional fitting program,
but excludes most importantly the library approach, thereby
removing the second-party software dependence. In the remainder
of this paper we will discuss the theory, the program structure and
three case studies. Please note that this paper is not intended as a
user manual for the program. A separate and up-to-date manual
[14] is provided at our website http://egdeconv.science.ru.nl,
where we also provide the input files for the examples.
2. Theory

The theory that follows is worked out specifically for spin 3/2
and 5/2 quadrupolar nuclei subjected to a two-pulse [2] or a z-fil-
tered [3] 3QMAS scheme. Both experiments are illustrated in Fig. 1.
The figures show how both experiments start with a radio fre-
quency (rf) block-pulse to excite triple-quantum-coherence. Sub-
sequently an incremented delay follows that forms the indirect
dimension, after which a conversion pulse-scheme is used to ob-
tain a detectable single quantum coherence to form the direct
dimension. Finally the whole pulse scheme is phase cycled to
exclusively obtain the required coherence pathway, all under
MAS conditions.

Our aim is to present the analytical expressions in full for others
to use without ambiguity. The manual [14] contains the expres-
sions as they are actually implemented. We assume a static sample
during the pulses and infinitely-fast MAS during the free evolution
of the coherences. The implications of ignoring the time depen-
dence of the crystallite orientations has been addressed in numer-
ous papers [11,15–20]. It most of all concerns not simulating the
redistribution of the spectral intensity in the spinning side bands
in both dimensions. In our case studies we show how we can still
obtain accurate and reliable interaction parameters and relative
(a) two-pulse 3QMAS

(b) z-filtered 3QMAS

Fig. 1. Triple quantum magic angle spinning pulse sequences. The pulse sequences
with their indirect t1 and direct t2 dimension are shown in black. Coherence
pathways are shown in grey. (a) The two pulses of length s1 and s2 provide the
triple-quantum-coherence excitation and conversion, respectively. (b) In the z-
filtered 3QMAS experiment, the triple-quantum-coherence is excited and subse-
quently converted to zero-quantum-coherence. A third low-amplitude rf-pulse of
width s3 provides a selective excitation of the detectable single-quantum-
coherence.
site abundances for this type of spectra. In the discussion section
we will elaborate more on the range of validity of the model.

In our approach, the MQMAS spectrum is described directly in
the frequency domain. The contribution of every crystallite orien-
tation to the spectrum is constructed by determining its frequency
coordinate and the efficiency of the excitation before adding it to
the powder average. We will refer to the model without excitation
efficiency as ideal excitation model.

2.1. Crystallite spectral position

The spectrum of a crystallite in the infinitely-fast MAS case, is a
single peak positioned at a two-dimensional frequency coordinate
with components of the form [21]

m�m!m ¼ 2mmiso þ CI;m
0 mqis þ CI;m

4 m4ða; bÞ: ð1Þ

In the case of a 3QMAS experiment, the magnetic quantum num-
bers are m = 1/2, 3/2 for the direct and indirect dimension, respec-
tively. I is the total nuclear angular momentum quantum number
and the coefficients of the isotropic and anisotropic term of the
quadrupolar interaction frequency are given by

CI;m
0 ¼ 2mðIðI þ 1Þ � 3m2Þ; ð2Þ

CI;m
4 ¼ 2mð18IðI þ 1Þ � 34m2 � 5Þ � P4ðcosðHMÞÞ: ð3Þ

The fourth order Legendre polynomial term P4(cos(HM)), equal to
�7/18 with HM the magic angle, is a MAS averaged scaling factor.
Furthermore miso, mqis and m4(a,b) in Eq. (1) are the isotropic chemical
and quadrupolar induced shift and the anisotropic frequency contri-
bution of the quadrupolar interaction. The latter two depend on the
quadrupolar interaction parameters g (asymmetry) and Cq (quadru-
polar coupling constant), two parameters we described in our pre-
vious EGdeconv paper [12], which are connected to Eq. (1) via

mqis ¼ �
C2

qð3þ gÞ
40m0I2ð2I � 1Þ2

ð4Þ

and

m4ða;bÞ¼
9C2

q

448m0I2ð2I�1Þ2

� 7
18
½3�gcosð2aÞ�2 sin4ðbÞþ2 gcosð2aÞ�2�g2

9

� �
sin2ðbÞþ 2

45
g2þ4

5

� �
:

ð5Þ

Here m0 = �cB0/2p is the Larmor frequency of the quadrupolar nu-
cleus, and a and b the Euler angles that connect the principal axes
frame of the quadrupolar interaction to the MAS rotor frame, see
Appendix A.

2.2. Crystallite excitation efficiency

We now proceed with the derivation of the crystallite excitation
efficiencies. The approach consists of solving the time dependent
Liouville-Von Neumann equation for the density operator involving
both the multiple-quantum-coherence excitation pulse and the
coherence-conversion pulse scheme. In addition to the assumptions
of infinitely-fast MAS during free coherence-evolution and a static
sample during pulsing, we neglect any rf-field offset [17,18]. An
assumption that relies on the relatively strong quadrupolar interac-
tion compared to practical rf-offsets, as will be addressed in the dis-
cussion section.

The relevant part of the density operator at thermal equilibrium
in the rotating frame of the Zeeman interaction at time s0, is given
by q̂ðs0Þ ¼ bIz and transforms after a block-pulse of length s1, see
Fig. 1, according to

http://egdeconv.science.ru.nl
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q̂ðs1Þ ¼ expf�ibHs1gq̂ðs0Þ expfibHs1g: ð6ÞbH is the Hamiltonian operator, in units of angular frequency, during
an rf block-pulse. The Hamiltonian includes the rf-field and the first
order quadrupolar interaction

bH ¼ �x1
bIx þ

XQ ðh;uÞ
6

½3bI2
z �bI2�; ð7Þ

with 2x1 = �cBrf and the quadrupolar frequency

XQ ðh;uÞ ¼
xQ

2
½3 cos2ðhÞ � 1þ g sin2ðhÞ cosð2uÞ�: ð8Þ

Here xQ = 6pCq/[2I(2I � 1)] and u and h are the Euler angles that
connect the principal axes frame of the quadrupolar interaction to
the laboratory frame, see Appendix A.

We now express the density operator in a basis of eigen func-
tions jI mi of the Zeeman Hamiltonian, and calculate matrix
element indices according to

qIþm0þ1;Iþmþ1 � hIm
0jq̂jImi: ð9Þ

To obtain the triple-quantum-coherence excited by the first pulse,
we need to determine the triple-quantum-coherence matrix element
at time s1. This requires the analytical diagonalisation of the Hamil-
tonian matrix given by Eq. (7) expressed in the appropriate Zeeman
basis. Eq. (6) in the basis of eigen functions of the Hamiltonian
directly returns the density matrix at time s1. After transformation
back to the jI mi basis we obtain the triple-quantum-coherence term
after the excitation pulse. Using Mathematica [22] we obtained for a
spin 3/2 nucleus

q41ðs1Þ¼�q14ðs1Þ¼
3icosðx1s1Þ

x2
þ�x2

�

�½fXQx�þx1xþgsinðxþs1Þ�fXQxþþx1x�gsinðx�s1Þ�

þ3isinðx1s1Þ
2ðx2

þ�x2
�Þ

� x2
��x2

þ�X2
Q

n o
cosðxþs1Þþ x2

��x2
þþX2

Q

n o
cosðx�s1Þ

h i
ð10Þ

that clearly shows the involved sum and difference frequencies

2x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

Q � 2XQx1 þ 4x2
1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

Q þ 2XQx1 þ 4x2
1

q
ð11Þ

as well as the conventional pulse flip-angle x1s1.
We also obtained expressions for spin I = 5/2 where the Math-

ematica-based Hamiltonian diagonalisation of Man [23] was used.
The symmetrical triple-quantum-coherence elements are

q52ðs1Þ ¼ �q25ðs1Þ ¼
i
2

X3

m¼1

X3

n¼1

kmn

Q mþQ n�
sinððxmþ �xn�Þs1Þ: ð12Þ

The definitions of the variables are

Q m� ¼ 1þ 5x2
1

4 10
3 XQ �xm�
� �2 þ

2x2
1

8
3 XQ � 3

2 x1 þxm�
� �2

" #
ð13Þ

and

kmn¼ 3þ 25x1

4 10
3 XQ �xmþ
� �

10
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8
3XQ �3
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:

ð14Þ
The eigenvalues of the Hamiltonian matrix are

x1� ¼ �x1
2 þ 2

ffiffiffiffi
s�
3

q
cos /�

3

� �
;

x2� ¼ �x1
2 � 2

ffiffiffiffi
s�
3

q
cos p

3 �
/�
3

� �
;

x3� ¼ �x1
2 � 2

ffiffiffiffi
s�
3

q
cos p

3 þ
/�
3

� �
;

ð15Þ

with

cosð/�Þ ¼
XQ

18s�

ffiffiffiffiffi
3
s�

s
160X2

Q � 36XQx1 � 144x2
1

	 

ð16Þ

and

s� ¼
84
9

X2
Q � 4XQx1 þ 4x2

1: ð17Þ

In the case of two-pulse 3QMAS data we are interested in the sin-
gle-quantum-coherence created by the second pulse shown in
Fig. 1a. By applying the approach for the first pulse to q̂ðs1Þ we ob-
tained for spin I = 3/2

q23ðs1 þ s2Þ ¼
3x2

1

2 x2
þ �x2

�
� � ½q14ðs1Þ � q41ðs1Þ� � cosðx1s2Þ

� sin
1
2
ðxþ þx�Þs2

� �
sin

1
2
ðxþ �x�Þs2

� �
:

ð18Þ

The same procedure was applied for spin I = 5/2 resulting in the fol-
lowing expression

q34ðs1 þ s2Þ ¼ x2
1½q25ðs1Þ � q52ðs1Þ�

�
X3

m¼1

X3

n¼1

cosððxmþ �xn�Þs2ÞðQmþQ n�Þ�1

8
3 XQ þ 3

2 x1 þxmþ
� �

8
3 XQ � 3

2 x1 þxn�
� � :

ð19Þ

In the case of z-filtered 3QMAS experiments, see Fig. 1b, we con-
sider the efficiency directly proportional to the population differ-
ence of the central-transition states. For a spin I = 3/2 this is

q22ðs1 þ s2Þ � q33ðs1 þ s2Þ ¼ �2i tanðx1s2Þq23ðs1 þ s2Þ: ð20Þ

This assumes ideal conversion of the zero-quantum coherence to
single-quantum coherence during the selective third pulse of length
s3 in the experiment, feasible by choosing the appropriate rf-field
[24,25]. For spin I = 5/2 the expression for q33(s1 + s2) � q44(s1 + s2)
is equal to the right hand side of Eq. (19) multiplied by -2i and the
cosine function replaced with a sine [14].

2.3. Ideal crystallite excitation

In this work we define ideal crystallite excitation as the spectral
line shape is directly determined by the number of crystallite ori-
entations that are mapped to each two-dimensional frequency
coordinate with components given by Eq. (1). In other words, the
excitation efficiency has a negligible angular dependence. In gen-
eral this situation is created by using short pulses; no differentia-
tion in coherence-evolution of the crystallites during the pulse.
And additionally sufficient field strength to fully cover the spectral
width of the line shape; a negligible rf-offset dependence.

3. The program

As noted above, the model for MQMAS spectrum simulation is
build into the EGdeconv program [12], a framework that provides
parallelised evolutionary algorithms to guide the data fitting.
Therefore we will only describe the MQMAS simulation model
here, and refer to the previous paper [12] and the accompanying



Fig. 2. The scheme used by EGdeconv to compute a subspectrum corresponding to a
chemical site. Depending on if the quadrupolar interaction parameters have a
distribution, crystallite spectra are summed per Cq, g pair to form a powder
spectrum and subsequently summed according to a distribution over Cq, g pairs.
Furthermore, the subspectrum receives a relative intensity, line broadening and a
convolution with a Gaussian distribution for the chemical shift. Parameters that are
indicated in the figure are available in each parameter set in the input file.
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manual [14] for further information on the parameters and key-
words used in the input file of the EGdeconv program.

We now proceed with the description of the synthesis of a sub-
spectrum. A subspectrum corresponds to a chemical site and the
sum of subspectra is the simulated spectrum that is used to fit
the experimental data. Fig. 2 shows the different steps of the calcu-
lation. All variables presented in the figure are directly controlled
via a parameter set in the EGdeconv input file. The heart of the sim-
ulation in Fig. 2 is the crystallite spectrum. It is created by combin-
ing the frequency coordinate components given by Eq. (1) and the
corresponding, but optional, excitation efficiency Eqs. (18), (19) or
(20). The program allows to apply a shearing transformation [21]
as a function of k according to

msheared
�m!m ¼ m�m!m � km�1=2!1=2: ð21Þ

A crystallite spectrum is generated per Cq, g pair and subsequently
summed over all orientations in a powder average. Currently only
the ZCW (Zaremba, Conroy, Wolfsberg) averaging scheme [26] is
implemented. Two-angle sets are used, with an equidistant integra-
tion over the third angle described in appendix Appendix A and
[14]. The quadrupolar interaction parameters may be distributed,
currently supported by the (extended) Czjzek distribution, which
involves a weighted sum over the generated powder spectra.

After all summations are done, the subspectrum is multiplied
with an overall intensity factor that corresponds to the relative
abundance of a chemical site in the material. Additionally the
two-dimensional line shape can be broadened with a Gaussian
and/or exponential apodisation to, e.g., match the data processing
or include the dephasing effects of dipolar couplings. The final step
is the convolution of the spectrum with an optional (Gaussian)
chemical shift distribution. This distribution has a mean diso and
a width rs [14].
4. Examples

In this section we present the results of several case studies
each of which represents a different part of the program’s capabil-
ities. We start by benchmarking EGdeconv by fitting several 27Al
3QMAS spectra, nuclear spin 5/2, of aluminium alkoxides. Quadru-
polar interaction parameters of the alkoxides were determined by
[27] by fitting one-dimensional data. Their 3QMAS data was used
to determine the isotropic chemical shifts. In this case study we
show how we obtain all these parameter values directly from the
3QMAS spectra and how spinning side bands are handled.

Subsequently we present the fit of 87Rb 3QMAS data, nuclear
spin 3/2, of rubidium-nitrate measured under experimental condi-
tions that lead to non-ideal excitation, thereby putting our fitting
model with analytical excitation efficiencies to the test. In addition
to reproducing the interaction parameters of [28], we prove that
we can reproduce the line shape and relative site intensities where
the ideal excitation model does not.

To conclude we show the analysis of the 3QMAS spectrum of an
yttrium-sialon glass. This spectrum reflects a distribution in both
quadrupolar interaction parameters and chemical shift, that we
try to model with respectively a Czjzek and Gaussian distribution
and the analytical excitation efficiencies. We show how we can
fit the line shapes of three sites simultaneously to obtain their
interaction distribution parameters. The interaction parameters
can subsequently be used to deconvolute the one-dimensional
spectrum, and obtain the relative site abundances.

All fits include the excitation efficiencies, unless stated other-
wise, and were performed with the Covariance matrix adaptation
evolution strategies (CMA-ES) algorithm [29]. The EGdeconv input
files of all MQMAS examples are available on our website http://
egdeconv.science.ru.nl.
4.1. Aluminium alkoxides

In Fig. 3 the 27Al sheared 3QMAS data fits of three different alkox-
ides coordinated to aluminium are presented. All spectra were mea-
sured and analysed in ref. [27] on the basis of one-dimensional and
3QMAS data. Table 1 summarises our resulting parameter values
from the 3QMAS fit, alongside their values from the previous study
[27]. In all spectra the sum-projections in both direct and indirect
dimensions of the two-dimensional experimental and simulated
data are shown. A least-squares [14] between these projections
was used as a measure of fit-quality for the CMA-ES algorithm. The
obvious benefit of the sum-projections is that the intensity of the
spinning side bands is added to that of the central transition in the
d2 dimension, which can be more readily simulated. The d1 dimen-
sion sum-projection provides in these spectra an extra feature to
determine the isotropic position of the central transition during the
fitting.

The spectrum of aluminium ethoxide, Fig. 3a, that corresponds
to a five-coordinated aluminium, shows a good match between the
sum-projections in the (d2) dimension. The main difference at high
d2 values in the figure is caused by an Al2O3 impurity. For the case
of aluminium butoxide, Fig. 3b, with a tetrahedral aluminium sur-
roundings the fitted spectrum also closely resembles the sum-pro-
jection of the experimental data. The line shape at d1 	 250 ppm is
an aliased spinning side band. Table 1 shows that we obtained

http://egdeconv.science.ru.nl
http://egdeconv.science.ru.nl


Fig. 3. 27Al z-filtered 3QMAS spectra (x1/2p = 310 kHz, s1 = 1.3 ls, s2 = 0.45 ls, and
s3 = 4 ls with x1/2p = 21 kHz), experiment (grey) and fit (black), for three
aluminium alkoxides [27]. The spectra are normalised based on their integrals,
and their sum-projections are scaled with their integrals to be visible on the
intensity scale of the spectrum. The isopropoxide spectrum is zoomed in on its
tetrahedral (IV) site, this is the reason for the cut of the octahedral (VI) site peak.
Data was sheared after the fit.

Table 1
Fitted interaction parameters for the alkoxide spectra in Fig. 3, values from [27] are in
italics. In the fit of isopropoxide, g of the octahedral site was fixed at 0.

diso (ppm) Cq (MHz) g

Ethoxide 35.5 35.5 9.58 9.65 0.37 0.39
Butoxide 48.5 48.5 13.03 13.14 0.64 0.61
Isoprop. (IV) 60.0 61.5 12.20 12.37 0.14 0.14
(VI) 0.8 2.5 0.6 1.9 0.0 0.0

Table 2
Fitted parameter values of the 87Rb 3QMAS spectra of rubidium-nitrate in Fig. 4. I, as
indicated in Fig. 2, stands for relative intensity, in this case with respect to site I. For
comparison the parameter values obtained by [30] at 29.3 �C are given in the most-
right column.

Site Pars (Fig. 4a) ideal (b) Eff. off (c) Eff. on [30]

I Cq (MHz) 1.75 1.77 1.74 1.77
g 0.54 0.60 0.55 0.54

II Cq (MHz) 1.72 1.75 1.73 1.72
g 0.19 0.27 0.16 0.19
I 0.97 0.90 1.06 1.00
Integral 1.14 0.93 0.93 –

III Cq (MHz) 1.99 1.99 1.99 2.01
g 0.89 0.93 0.91 0.90
I 1.00 0.85 0.99 1.00
Integral 0.93 0.87 0.87 –
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interaction parameters that agree with the findings of [27] on the
basis of MQMAS and one-dimensional data for both spectra.

The spectrum of aluminium isopropoxide in Fig. 3c reveals a
tetrahedral (IV) and octahedral (VI) site that posed the opportunity
to determine relative site abundances. From the fit of these relative
intensities we obtained the ratio (IV):(VI) = 1:2.7 which was deter-
mined 1:3 by [27] on the basis of one-dimensional data. It should
be noted that there is a negligible difference between the fitted rel-
ative intensities, whether the analytical excitation efficiencies are
accounted for or not. This means that with the current pulse
widths both sites are excited with similar efficiency. The difference
for Cq of the octahedral site (VI) is due to a lack of quadrupolar fea-
tures in the sharp line.

4.2. Rubidium-nitrate

Rubidium-nitrate (RbNO3), as the guinea pig for MQMAS exper-
iments, has three well-defined sites with: equal abundance, similar
quadrupolar coupling constants, but different asymmetry parame-
ters as given in the most-right column in Table 2.

To further test the analytical excitation efficiency model and
distinguish it from the ideal excitation model, two 87Rb 3QMAS
spectra of RbNO3 were measured. One spectrum was obtained
using relatively short pulses and strong rf-field strength and repre-
sents the ideal excitation case (Fig. 4a), as discussed in Section 2.3.
The second spectrum was obtain with complementary settings to
evoke non-ideal excitation (Fig. 4b and c). By measuring the spec-
trum at a magnetic field of 300 MHz proton frequency we also
encountered overlapping lines as an additional challenge for the
fitting.

A fit of the ideal excitation spectrum using either model results
in Fig. 4a. The least squares difference between the two-dimen-
sional experimental and simulated spectra was used [14] as the
quality measure for the CMA-ES algorithm. Table 2 shows that
the fitted parameter values are nearly equal to those from litera-
ture [30]. This is a confirmation that the assumption of ideal exci-
tation is valid in this case.

Fitting the second spectrum resulted in a different fit for each
model as shown in Fig 4b and c. Incorporation of the (analytical)



(a) excitation efficiency model fit to ideal excitation data

(c) excitation efficiency model fit to non-ideal excitation data

(b) ideal excitation model fit to non-ideal excitation data

I

II

III

I

II

III

I

II

III

Fig. 4. Simulations (black) of the z-filtered 87Rb 3QMAS spectrum of rubidium-nitrate (grey). Integrals of the spectra are set equal, contour lines are drawn at the same
intensities. (a) ideal excitation spectrum (x1/2p = 211 kHz, s1 = 2.6 ls, s2 = 0.9 ls) fitted with excitation efficiency model. (b) and (c) the non-ideal excitation spectrum (x1/
2p = 108 kHz, s1 = 5.2 ls, s2 = 2.6 ls) fitted with and without analytical excitation efficiencies.
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excitation efficiencies provides a better description of especially
line shapes I and II. This is reflected in a difference in g parameter
for both fits as shown in Table 2. Particularly line shape II is differ-
ent from that in Fig. 4a. The intensity of the left peak appears to
move into the right shoulder of the line.

With respect to the prediction of relative site abundances, it fol-
lows from Table 2 that the excitation model fit comes closest to the
actual ratio. Especially if we compare the sum of the intensities
(due to the overlap of the line shapes), we obtain the ratios
1:2.05 and 1:1.75. The ideal excitation model appears to follow
the trend of the line shape integrals, which leads to an underesti-
mation of the intensities of lines II and III.

4.3. Yttrium-sialon glass

Sialon glasses doped with rare-earth metals are interesting for
photo-electric applications. Glasses are disordered systems which
makes quantification in terms of interaction constants tedious.
The benefit of having MQMAS data is that it aids in effectively
separating chemical shift and quadrupolar interaction contribu-
tions to the spectrum, that would otherwise not be visible in the
one-dimensional data.

In practice this means that, after shearing, a distribution in chem-
ical shift will become visible as a broadened line in the F1 dimen-
sion. For a distribution in quadrupolar interaction parameters, the
line shape is influenced in both dimensions by the (isotropic) quad-
rupolar induced shift, however, only the F2 dimension is influenced
by the anisotropic part of the interaction. The two-dimensional
spectrum thereby provides enough features to distinguish and fit
interaction parameter distributions, and potentially relative site
abundances as discussed in the rubidium-nitrate case study.

Fig. 5a shows the fitted 27Al 3QMAS spectrum of an yttrium-sia-
lon glass [31] (named after the atomic constituents: silicium, alu-
minium, oxygen and nitrogen), using the inner product cost
function [14] between the two-dimensional spectra as the quality
measure. In both dimensions of the spectrum we see broadened
lines which indicates both chemical shift and quadrupolar interac-
tions are distributed. In the two-dimensional plane, the lines are
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Fig. 5. Experimental data is in shown in grey, simulated results are in black. (a)
Fitted 27Al 3QMAS spectrum of an yttrium-sialon glass with skyline projections.
Three chemically distinct sites are shown that correspond to variations in, from
bottom to top: tetrahedral, trigonal bipyramidal and octahedral surroundings. A
Czjzek and Gaussian distribution is used for the quadrupolar interaction and
chemical shift, respectively. Fitted parameter values are given in Table 3. (b) Fit of
the one-pulse spectrum. Czjzek distribution parameter values from the 3QMAS fit
are used (Table 3). The subspectra that constitute the simulated spectrum are
plotted below the base line.

Table 3
The parameter values from the fit of the yttrium-sialon glass (Fig. 5). Parameters diso,
rs are the mean and width of the Gaussian chemical shift distribution, r the width of
the Czjzek distribution (power factor d = 5), 2D integrals of the lines in Fig. 5a, I the
relative intensities of Fig. 5a and b.

Coordination diso (ppm) rs (ppm) r (MHz) 2D integral 2D I 1D I

Tetrahedral 62.6 17.0 4.03 1.00 1.00 1.00
Trigon. bip. 27.7 13.6 4.04 0.21 0.20 0.30
Octahedral �2.4 11.4 3.65 0.03 0.04 0.05
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separated which is useful to avoid ambiguity in the fit. Note the
one-pulse spectrum of the sialon material in Fig. 5b does not pro-
vide these insights.

The three distinct lines of the chemical sites in the spectrum are
probably broadened due to structural variations in bond angles and
lengths deviating from: tetrahedral, trigonal bipyramidal and octa-
hedral coordinations in the material [32]. Fig. 5a shows how a com-
bination of the Czjzek distribution for the quadrupolar interaction
parameters and a Gaussian distribution for the chemical shift can
approximate the line shapes in the spectrum. Only at the basis of
the largest peak a mismatch is visible between the more triangular
basis of the experimental data and the more rounded simulated
spectrum. Table 3 presents the fitted parameter values. It should
be noted that a fit with either ideal or excitation efficiency model
did not change the results. Together with the fact that the intensi-
ties match with the line integrals, we may conclude ideal excita-
tion of the material.

The fitted interaction parameters of the 3QMAS were used to fit
the one-pulse spectrum of the yttrium-sialon glass. This led to a
good and stable fit as shown in Fig. 5b. Note that the asymmetric
line shape of the subspectra is caused by the Czjzek distribution.
Table 3 shows the fitted relative intensities of the lines. There is
a significant difference for the MQMAS and 1D fit with respect to
the tetrahedral and trigonal bipyramidal site intensity ratios. This
difference we explain by the different effective T1 > 2 s of the
two sites in combination with the cycle delay of 4 s that was used
to limit the time needed for the 3QMAS experiment. The one-pulse
data should be quantitative since only a short pulse, and therefore
a small flip-angle, is used.
5. Discussion

A large part of this paper is focussed on the analytical excitation
efficiencies to extend the accuracy of fast MQMAS spectrum simu-
lation. Here we would like to elaborate on the limits of the validity
of the theory by using physical arguments and tests we performed.

One of the first assumptions is that the spin system can be trea-
ted as static during the pulsing. An important argument in favour
of this, is the order of magnitude difference between the pulse
widths of several ls (equivalent to hundreds of kHz) and the
MAS speeds of several tens of kHz. In addition to the argument
of a small c angle rotation Appendix (A) of the MAS rotor, typically
of the order of 10 degrees, the positions of the crystallites along the
direction of rotation are interchanged. This leads to a further indis-
tinction for the crystallite excitation efficiency. If the pulse be-
comes too long or the MAS speed too high, the excitation
efficiency will be influenced, and our model will no longer be valid.
Pulse lengths can be shortened by increasing the rf-field strength
[21]. Whether or not the use of our model is valid should be as-
sessed per experiment. For the case study of the sialon glass, at
37 kHz MAS, the line shapes could be reproduced accurately.

For testing purposes we used SIMPSON as well as our own numer-
ical integration routine to solve the Liouville-Von Neumann equa-
tion including the full quadrupolar interaction Hamiltonian, rf-
field and sample rotation for a single crystallite. Although we did
not thoroughly study all of the parameter dependencies, for typical
pulse widths and interaction parameters, related to the examples,
our perturbative method did not significantly deviate from the exact
solution. SIMPSON additionally accounts for MAS and second order
quadrupolar coupling. The results started to deviate for MAS speeds
above 30 kHz and pulse widths larger than 10 ls. This shows our
model is realistic for a wide range of experimental settings.

Secondly we assume an ideal zero to single quantum conversion
pulse in a z-filtered 3QMAS experiment. Which should be accept-
able with a properly chosen rf-field for the z-filter pulse [24,25].
We experimentally verified the correctness of the assumption by
comparing two-pulse data with z-filtered data at different rf-field
strengths for the rubidium-nitrate. Additionally our testing pro-
gram showed the explicit incorporation of the third pulse does
not alter the results for typical experimental settings.

Thirdly we disregard rf-offset, which is acceptable given the tilt
angle of the nutation does not deviate much for line widths of sev-
eral kHz and rf-field strengths of hundred kHz or more. If neces-
sary, it is possible to implement analytical excitation efficiencies
including rf-offset [17,18].

The assumption that proves the more difficult to handle is the
infinitely-fast spinning limit. Spinning side bands are often visible



Fig. A.6. Definition of the Euler angles (a, b, c) that relate the interaction’s principal
axes frame (x, y, z) to the reference frame (X, Y, Z). Note that the vector N is normal
to the plane of the z and Z axes.
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in the spectrum, so this immediately proves this assumption is
incorrect. In order to still obtain reliable results it is important to
have all spinning side bands present in the spectrum, so all spectral
intensity can be regained in the sum-projections so the projections
can be fitted as shown in the alkoxides example. A practical solution
may be to perform rotor synchronised detection experiments [33],
in order for all side bands to fold back on top of the central peak.

To conclude, in addition to obtaining the correct line shape and
thereby the quadrupolar interaction parameters, it is also feasible
to obtain the relative abundance of the sites directly from the
MQMAS data, as was shown in the rubidium-nitrate example. In
the yttrium-sialon case study, however, we encountered a problem
due to the requirement of a relatively long cycle delay in the exper-
iment due to the different effective T1’s of the sites. In such cases it
is easier to obtain the interaction parameter information from the
MQMAS data and use these to fit a one-pulse spectrum to obtain
quantitative relative intensities.

6. Conclusions

We have shown the capabilities of the EGdeconv program to fit,
guided by evolutionary algorithms, MQMAS spectra using an ana-
lytical crystallite excitation efficiency model. We presented the the-
ory for the model in full detail to avoid ambiguity and to facilitate
others to use it. In three case studies we showed how to obtain
quantitative information from fitting 3QMAS spectra with: spin-
ning side bands, multiple sites, interaction parameter distributions
and non-ideal excitation. The ideal excitation model encompasses
all quadrupolar nuclei and multiple-quantum-coherence excita-
tion, while excitation efficiencies are available for I = 3/2, 5/2 nuclei
and two-pulse and z-filtered 3QMAS.

7. Experimental

7.1. 1D sialon fit

For the fit of the 1D spectrum of the yttrium-sialon glass with
the EGdeconv program, a library size of 609 files, simulated with
SIMPSON, was used with Cq ranging from 1 to 15 MHz in steps of
0.5 MHz and g from 0 to 1 in steps of 0.05.

7.2. Yttrium-sialon

The single-pulse and MQMAS experiments were performed on
an 850 MHz Varian spectrometer at a MAS frequency of 37 kHz,
with AlCl(aqua) as reference compound for 27Al at 221 MHz.
A pulse length of 1.4 ls and a rf-field strength of 20 kHz was
used in the single-pulse experiment. The z-filtered 3QMAS experi-
ment was performed with an rf-field strength of 150 kHz for the
excitation and conversion pulses with a pulse length of 2.4 and
0.8 ls respectively. The z-filter pulse was 5 ls long at an rf-field
of 20 kHz.

Both single-pulse and MQMAS spectrum were corrected for alu-
minium background of the rotor. The rotor signal was measured
with the same experimental settings and subsequently subtracted
from the spectra.

7.3. Rubidium-nitrate

The 87Rb z-filtered 3QMAS spectrum was measured on a
300 MHz Varian spectrometer at 12.5 kHz MAS. The non-ideal
excitation data was obtained using an rf-field strength of
105 kHz for the excitation and conversion pulses with lengths 5.2
and 1.8 ls, respectively. For the ideal excitation data the rf-field
settings were: 211 kHz field strength and pulse widths of 2.6 and
0.9 ls. The z-filter pulse had a strength of 10 kHz and width of
11 ls. A reference of RbCl(aqua) was used for 87Rb at 96 MHz.
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Appendix A. Frame interconversion

Eqs. (1) and (7) for the position and intensity of a single crystal
spectrum are defined with respect to the MAS and laboratory ref-
erence frame, respectively. Fig. A.6 illustrates how the Euler angles
relate the principal axes frame (x,y,z) of the quadrupolar interac-
tion tensor to a reference frame, either the MAS frame (Z along
the MAS axis) with a, b, c or laboratory frame (Z along the mag-
netic field) where we use u, h, w in this work.

It is the infinitely-fast MAS assumption and cylindrical symme-
try of the magnetic field that render Eqs. (1) and (7) invariant to
the c and w angle. When we, however, want to relate a frequency
coordinate to an excitation efficiency we need to relate the angles
to each other. We worked out the following relations

cosðhÞ ¼ � sinðHMÞ sinðbÞ cosðcÞ þ cosðHMÞ cosðbÞ;
cosðuÞ ¼ sinðHMÞ½cosðaÞ cosðbÞ cosðcÞ � sinðaÞ sinðcÞ�

þ cosðHMÞ cosðaÞ sinðbÞ;
ðA:1Þ

from which we can construct all terms in Eq. (8) using goniometric
identities.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jmr.2012.12.012.
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