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We obtain dipolar couplings via a novel application of evolutionary algorithms solving for multiple spin-
systems simultaneously and automatically from the NMR spectra of several solutes in several nematic
and smectic liquid crystal solvents. The order parameters obtained from the dipolar couplings are used
to test a novel Hamiltonian that includes two Maier–Saupe nematic terms plus Kobayashi–McMillan
smectic A terms. It is shown that this Hamiltonian can rationalize the NMR experiments with physically
reasonable smectic order parameters and Hamiltonian prefactors.
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Two limits to the study of condensed matter by NMR are the
ability to solve proton spectra and the availability of a Hamiltonian
that describes the intermolecular interactions well. This is espe-
cially the case in the study of ordered fluids where the spectra of
solute molecules are dominated by dipolar couplings [1]. The pros-
pect of automated analysis of such spectra has been investigated
with considerable success [2]. In later developments evolutionary
algorithms (EAs) were found to yield solutions of moderately com-
plicated molecules but often required operator intervention so as
to avoid false minima [3,4]. A later application of the genetic algo-
rithm proved to be more robust, avoiding false minima without
operator intervention [5]. More recently the use of covariance ma-
trix adaptation evolution strategy (CMA-ES) [6] has made it possi-
ble to solve very complicated spectra (such as oriented pentane
with many of its roughly 20000 transitions overlapping) that
would not have been otherwise possible by conventional means
[7].

An interesting property of liquid crystals is the orientational
ordering of molecules that make up the nematic phase and their
positional ordering in the smectic A phase [8]. Nematic liquid crys-
tals have uniaxial orientational order along an average direction
called the director. For many purposes these molecules can be
approximated by axially symmetric rods that would then have a
single nematic order parameter SL. If the nematic phase were to
be perfectly ordered with all rods aligned along the director an SL
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value of 1 is obtained whereas if it were heated up to the isotropic
phase the SL would become 0.

The smectic A phase has positional as well as orientational or-
der. More specifically liquid crystal molecules will arrange, on
average, into layers whose planes are perpendicular to the director.
Kobayashi–McMillan theory provides a way to account for posi-
tional order with the use of additional order parameters [9,10].
One of these will be sL which is zero if the centres of molecules
are spread evenly across layers (as in a nematic) and 1 if they oc-
cupy a single position in the centre of the layer. But SL, the liquid
crystal orientational order parameter, can change as the molecule
goes deeper into the layer so there must be a nematic–smectic A
coupling which will have an orientational–translational order
parameter called jL. This theory has been applied in previous stud-
ies, one of which used Density Functional Theory methods for the
solute–solvent potential [11]. It has also been used in the context
of solutes as probes of the liquid crystal environment, but many
assumptions were necessary. While the attempt was to test the
Kobayashi–McMillan (KM) theory, the application was ironically
hampered by an inadequate description of the nematic phase
[12–14].

There is a wealth of literature dealing with the kinds of inter-
molecular forces that solutes experience when dissolved in liquid
crystals [1,15–20]. There is still much disagreement as to which ef-
fects dominate the nematic potential. However, there is compelling
evidence to support a large role for size and shape effects [15].
More recently it has been shown that the use of two independent
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Fig. 1. The upper plot is of the experimental 400 MHz NMR spectrum while the lower is found using the CMA-ES. The peaks of the solutes (from left to right: tcb, clpro, fur and
thio shown above in the molecule fixed coordinate system) are interspersed with one another.
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mean-field Maier–Saupe terms (MSMS) in the nematic potential
can fit experimental order parameters to better than 5% [21]1. In
what follows we utilize advances provided by CMA-ES in spectral
analysis along with a physically reasonable Hamiltonian that com-
bines the MSMS and KM theories to rationalize NMR observables
of solutes dissolved in smectic and nematic phases.

The CMA-ES uses the principles of natural selection to evaluate
potential solutions and the history of change in previous genera-
tions (a group of potential solutions) to guide a present generation
towards a global minimum of an error surface. The solution at this
minimum can be thought of as the NMR parameters (chemical
shifts, scalar couplings and direct couplings) which best replicate
the experimental NMR spectrum. First, an operator must choose
reasonable upper and lower limits for each parameter. This will de-
fine the search or parameter space and one hopes that the correct
solution is a point in this multidimensional space. A population of
parameter sets are chosen randomly within the defined limits. Cal-
culated spectra are generated from each member of the population
and can be thought of as a vector f just as the list of intensities and
frequencies of the experimental spectrum can be thought of as a
vector g. Then by defining the Fitness function:

Ffg ¼
ðf � gÞ
kfkkgk ð1Þ

a number of the best parameter sets, with Ffg closest to 1, can be
chosen as the next generation parents. This number is chosen by
the operator and is typically 50% of the population size. A popula-
tion will be created from these parents in a mutative step-size fash-
ion. The offspring of this next generation will be spread out over a
larger region of the parameter space due to the movement from
selection in the previous generation. A new ‘most fit’ solution will
1 Note that the Sxx values for fluorobenzene in 1132 and MM reported in Table 1 o
Ref. [21] should both be positive.
f

be selected according to Ffg but the next parents location in param-
eter space will be a weighted sum of the last two movements. This
memory effect of the evolutionary algorithm, which uses past
mutation vectors coupled with natural selection to calculate the
parents of a next generation, helps to overcome local minima and
move closer to the global error minimum until convergence is
reached. The CMA-ES approach was quite successful (see Fig. 1) in
the current study of furan (fur), thiophene (thio), 2,2-dichloropro-
pane (clpro) and 1,3,5-trichlorobenzene (tcb) dissolved in the liquid
crystal 4-n-octyl-40-cyanobiphenyl (8CB) that forms both a nematic
and a lower temperature smectic A phase. While the spectra are not
as congested as the spectrum of oriented pentane [7], the parameter
space is still comparably large as there are four independent param-
eter sets. Specifically, the pentane parameter space was defined by
11 dipolar couplings (Dij), 3 chemical shifts (xi) and 9 indirect cou-
plings (Jij) while that of the combined solutes is composed of 11 Dij,
6 xi and 3 scaling parameters that scale the relative intensities of
solutes. The result is impressive since all solutes are solved for
simultaneously and automatically. This achievement will be crucial
for future more elaborate studies of solutes in the nematic and
smectic phases of a given liquid crystal.

All the solutes were dissolved in roughly equal amounts in 8CB
for a total mole fraction of about 2% so that interactions amongst
solutes can be ignored. It is important that solutes be dissolved
in the same sample tube (as was done here) so that they experi-
ence the same environment. Spectra were collected in 0.5 or 1 K
steps on both sides of the nematic–smectic A transition. The result-
ing dipolar couplings obtained from CMA-ES analysis were then
used to calculate solute order parameters using a modified version
of the computer program SHAPE [22] and structures from the liter-
ature [23–26]. One can see that the order parameters are affected
by the smectic environment when plotting the solute order tensor
asymmetry

R ¼ ðSxx � SyyÞ=Szz ð2Þ



118 A.C.J. Weber et al. / Chemical Physics Letters 476 (2009) 116–119
versus solute Sxx and noting the change in slope at the phase tran-
sition as shown in Fig. 2.

The MSMS nematic potential for solutes with two or fewer inde-
pendent order parameters can be written as:

HN;LsðXsÞ ¼ �
3
4

X2

i¼1

GL;ZZðiÞbs;zzðiÞ

� 3
2

cos2ðhsÞ �
1
2

� �
þ bsðiÞ

2
sin2ðhsÞ cosð2/sÞ

� �

¼ HMS1 þ HMS2 ; ð3Þ

where

bsðiÞ ¼
bs;xxðiÞ � bs;yyðiÞ

bs;zzðiÞ
: ð4Þ

Consistent with Maier–Saupe theory, the GL;ZZð1Þ and GL;ZZð2Þ are ta-
ken to be mean-field properties of the liquid crystal that interact
with some solute properties which are denoted by the bs;ccð1Þ and
bs;ccð2Þ. The index c runs over the molecule fixed x, y and z axes. Gi-
ven the assumptions made in previous studies using Kobayashi–
McMillan theory [12–14] and the recent success of the MSMS po-
tential in dealing with nematics, the Hamiltonian for the potential
in a smectic liquid crystal is proposed to be:

HA;LsðXs; ZÞ ¼ HMS1 1þ j0Lð1Þ cos
2pZ

d

� �� �

þ HMS2 1þ j0Lð2Þ cos
2pZ

d

� �� �
� s0Ls cos

2pZ
d

� �
; ð5Þ
Fig. 2. The asymmetry in the order parameters (R) for fur, thio and clpro are plotted
against their respective Sxx . An arrow marks the phase transition and the lines are
the best fit to the points in the nematic phase.
where j0Lð1Þ and j0Lð2Þ are the nematic–smectic coupling Hamilto-
nian prefactors, one to modulate each of the two nematic ordering
mechanisms as we move across a layer, and it is reasonable to take
them as a liquid crystal property. There is one s0Ls (the solute smectic
prefactor) for each solute in a given liquid crystal and d is the width
of the layer while Z (Z = 0 in the centre of a layer) maps the direction
parallel to the director which lies along the magnetic field direction
in the experiments reported here.

Because the bs;ccðiÞ are solute properties, and hence not func-
tions of temperature or liquid crystal solvent, their values are first
obtained by fitting to order parameters of several molecules
(including the ones of interest) in five different nematic liquid crys-
tals with the MSMS potential. In particular we have used the liquid
crystals: Merck ZLI-1132 (1132), a ‘magic mixture’ of 55 wt% 1132
and 45 wt% p-ethoxybenzylidene-p0-n-butylaniline (EBBA), EBBA
and both 8CB and 4-n-octyloxy-40-cyanobiphenyl (8OCB) at three
different temperatures spanning the nematic phase. The analysis
is carried out in the same manner as in [21] using the relationship:

Ss;cc ¼
R

dXs
3
2 cos2ðhs;cÞ � 1

2

� �
e
�HN;Ls ðXsÞ

kBT

R
dXse

�HN;Ls ðXs Þ
kBT

: ð6Þ

With the bs;ccðiÞ’s now fixed we proceed by fitting the experi-
mental order parameters for the solutes of interest at each temper-
ature in both the nematic and smectic phases of 8CB, using the
nematic potential only by varying GL;ZZð1Þ and GL;ZZð2Þ, and notice
that the RMS of the fit increases significantly in the smectic phase
(open circles in inset to Fig. 3). We then attempt to fit the Ss;cc in
the smectic A phase to the combined MSMS-KM Hamiltonian of
Eq. (5) varying all free parameters (GL;ZZðiÞ, j0LðiÞ and s0Ls) with the
expression:

Ss;cc ¼
R

dXs
R d

0
3
2 cos2ðhs;cÞ � 1

2

� �
e
�HA;Ls ðXs ;ZÞ

kBT dZ
R

dXs
R d

0 e
�HA;Ls ðXs ;ZÞ

kBT dZ
ð7Þ

to find that it does not converge and so are forced to make an
assumption. In previous work, in order to be over-determined so
Fig. 3. G8CB;ZZð1Þ is plotted against G8CB;ZZð2Þ where the black points signify the use
of the smectic Hamiltonian and the open points are obtained with the nematic
potential only. The 10 points closest to the origin are from measurements in the
nematic phase while the rest are in the smectic phase. Inset: The RMS of fits to
either potential in both phases are plotted against G8CB;ZZð2Þ.



Fig. 4. The smectic order parameters sLs are plotted against temperature for each of
the solutes tcb, fur, thio and clpro.

A.C.J. Weber et al. / Chemical Physics Letters 476 (2009) 116–119 119
as to solve for smectic Hamiltonian prefactors, we linearly extrapo-
lated the interaction energy from the nematic into the smectic
phase once for each solute (where some solutes showed some cur-
vature) and used the extrapolation to estimate the smectic effect.
This crude assumption has been circumvented by the MSMS theory.
Here we make the single assumption that GL;ZZð1Þ is linearly related
to GL;ZZð2Þ. Hence, we extrapolate once for the liquid crystal by
drawing a line through the nematic points of GL;ZZð1Þ versus
GL;ZZð2Þ and forcing this relationship into the smectic phase as seen
in Fig. 3. Under these circumstances we now vary GL;ZZð2Þ (from
which GL;ZZð1Þ is calculated), j0Lð1Þ and j0Lð2Þ for the liquid crystal
and a s0Ls for each solute to find that we obtain excellent fits (see in-
set of Fig. 3).

With the smectic Hamiltonian in hand we go on to calculate the
solute smectic order parameters sLs using:

sLs ¼
R

dXs
R d

0 cos 2pZ
d

� �
e
�HA;Ls ðXs ;ZÞ

kBT dZ
R

dXs
R d

0 e
�HA;Ls ðXs ;ZÞ

kBT dZ
ð8Þ

the results of which are shown in Fig. 4. The overall trend is satisfy-
ing in that the magnitude of sLs (with the exception of fur) becomes
smaller with increasing temperature as would be expected when
approaching the nematic phase. A negative value of sLs implies a
preference for the interlayer region while a positive value indicates
a preference to the centre of a layer. The closer the sLs of either sign
is to zero the less pronounced is its partitioning, with sLs ¼ 0 mean-
ing positional isotropy. It is interesting to note that clpro has the
largest negative sLs which means it displays the most partitioning
to the interlayer region, as expected because the size and shape of
clpro is fairly well approximated by a sphere. Fur and thio show less
partitioning, but exhibit opposite trends with changing tempera-
ture. In particular fur tends to partition more to the interlayer re-
gion upon increasing temperature.

Turning now to the liquid crystal prefactors we note that the
GL;ZZð2Þ calculated with the smectic potential of Eq. (5) is smaller
than that calculated with only the MSMS nematic potential of Eq.
(3) for fits in the smectic phase as seen in Fig. 3. This shows that
the nematic potential was accounting for the extra order of the
smectic phase which was later picked up in a more appropriate
way in the smectic potential. We obtain a j0Lð1Þ value of 0.38 which
is constant and in good agreement with our previous studies. How-
ever, previously we had only one coupling prefactor which modu-
lated all nematic mechanisms that were brought together as one
term. With these restrictions now relaxed it is interesting to find
a constant j0Lð2Þ value of �2.5, greater than 1 in absolute value.
In other words, the second MS mechanism in Eq. (5) undergoes a
sign change as a function of Z due to the nematic–smectic coupling
in 8CB. This seems to imply that there are planes along Z where the
second MS mechanism imposes no order and that there would be
isotropy here were it not for the dominance of the first MS
mechanism.

In summary, we have shown that an MSMS-KM potential can be
used to obtain valuable information on solutes in the smectic
phase in addition to some clues regarding the phase itself. These
matters clearly merit further, more elaborate investigation which
are much more manageable now that we can quickly solve spectra
of multiple solutes automatically and simultaneously in liquid
crystals using evolutionary algorithms.
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