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Abstract

This paper describes a numerical technique that has recently been developed to automatically
assign and fit high-resolution spectra. The method makes use of genetic algorithms (GA).
The current algorithm is compared with previously used analysing methods. The general
features of the GA and its applications in automated assignments is discussed. In a number
of examples the successful application of the technique is demonstrated.

PACS numbers: 07.05.Kf, 33.20.Lg, 33.20.Sn, 33.15.Mt, 36.40.Mr

1. Introduction

Until a couple of years ago spectroscopists all over the
world were mainly using traditional manners of spectral
assignments. The methods are based on finding regularities
and performing a by eye pattern recognition and assign in this
way quantum numbers to the transitions. In general this is a
tedious process and even a relative simple spectrum as for
example of the rotationally cooled naphthalene molecule [1]
can take an experienced scientist from a couple of days up
to several weeks. If the analysis involves a series of spectra
for example as function of vibrational quantum number or
from different isotopomers or conformers the amount of
work rapidly grows out of hand. Consequently, the traditional
techniques inhibit the study of larger and more complicated
systems such as molecules of biological interest.

A number of tools has been developed that make
use of fast computers and their graphical possibilities to
facilitate the assignment by eye. Very widely used and with
great success, particularly in the analysis of microwave
spectra, is the Loomis—Wood method [2]. A Loomis—Wood
diagram is a two-dimensional peak diagram in which the
occurrence of a transition is plotted versus frequency, in
segments, with successive segments displayed one above
another. Such diagrams were first used by Loomis and Wood
in 1928. Because of the time required to manually create a
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Loomis—Wood diagram, they were not useful in the initial
assignment of spectra before the advent of microcomputers.
The first computer program to generate a Loomis—Wood plot
was written at the Ohio State University in the 1960s [3]
and the first interactive Loomis—Wood applications by
Winnewisser et al [4] appeared in the 1980s. Loomis—Wood
programs are particularly useful for the analysis of congested
spectra of symmetric tops, slightly asymmetric tops, and
linear molecules. Neese [5] has developed an interactive
Loomis—Wood assignment package. A nice example of a
recent application of the Loomis—Wood method can be found
in the paper of Thompsom et al [6].

In this frame the computer program JB95 developed by
Plusquellic [7] should be mentioned. This program has been
very successful in the graphical assignment (by eye) of high-
resolution rotationally resolved spectra. The program consists
of a graphical user interface based on a Windows platform.

In a recent paper, Morruzi [8] presented an investigation
on the feasibility of automated molecular line assignment.
Dense rovibrational molecular spectra are normally assigned
by strongly interactive computer methods, ranging from
commercial spreadsheets to dedicated programs, like Loomis—
Wood or Ritz. While a general-purpose, fully automated
assignment procedure seems to be out of reach for the near
future, he shows that a thorough investigation of the problem
can lead to new, more efficient and less interactive methods,
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at least in reasonably favourable conditions. Interesting
suggestions are provided by some modern heuristic problem-
solving algorithms, which mimic natural processes.

In order to try to solve the assignment problems with the
help of a computer the group of Neusser [9] has developed a
procedure, which directly fits the experimental data, without
prior assignments. This method, which is called ‘correlation
automated rotational fitting’, has been pioneered by Levy
and co-workers [10-12], and uses the correlation between the
experimental and the simulated spectrum as a measure of the
quality of the fit. Unfortunately, the method still has limited
applicability.

The outcome of a first study in which genetic
algorithms (GA) were used to solve the automatic assignment
problem was very promising and resulted in a paper by
Hageman et al [13]. In that paper it was shown that
for a series of previously manually assigned spectra of
molecules like indole, indazole, benzimidazole [14] and
4-aminobenzonitrile [15], an automatic fitting based on GA
was successful. A crucial role in the success was the
development of a proper fitness function.

In a further series of papers Meerts and Schmitt
showed that the GA method to automate the assignment
of complicated and entangled spectra was extremely
successful [16-22].

Related methods using GA have previously been used in
a variety of other spectroscopic applications such as Nuclear
Magnetic Resonance [23], fluorescence/absorption spectra
in polyatomic molecules [24], Mossbauer spectroscopy [25],
x-ray spectra from plasmas [26] and powder EPR spectra [27].

In this work we discuss the general GA method, its
application and some of the highlights and successes. The
examples given in this paper are from high-resolution gas
phase spectra. However, the discussed automated assignment
with the help of the GA method can be applied on a much
wider range of spectra.

2. The genetic algorithm

A description of the GA used in this investigation can be
found in [13, 18]. The GA is basically a global optimizer,
which uses concepts copied from natural reproduction and
selection processes. For a detailed description of the GA the
reader is referred to the original literature [28—30]. We shortly
introduce the elements of the GA, which will be used in the
following.

e Representation of the parameters: the molecular parame-
ters are encoded binary or as real data type, each para-
meter representing a gene. A vector of all genes, which
contains all molecular parameters is called a chromo-
some. In an initial step the values for all parameters are
set to random values between lower and upper limits
which have to be chosen by the user. No prior knowledge
of the parameters is necessary. A total of 300-500 chro-
mosomes are randomly generated, forming a population.

e The solutions (chromosomes) are evaluated by a fitness
function (or cost function), which is a measure for the
quality of the individual solution. The fitness function
which is used here, is described below.
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e One optimization cycle, including evaluation of the cost
of all chromosomes is called a generation. Generally,
convergence of the fit in our case is reached after 300—
500 generations.

e Pairs of chromosomes are selected for reproduction and
their information is combined via a crossover process.
This crossover might take place as a one-point, two-
point or uniform crossover. A crossover just combines
information from the parent generations. It basically
explores the error landscape.

e The value of a small number of bits is changed randomly.
This process is called mutation. Mutation can be viewed
as exploration of the cost surface. The best solutions
within a generation are excluded from mutation. This
elitism prevents already good solutions from being
degraded.

The performance of the GA depends on internal
parameters like mutation rate, elitism, crossover probability
and population size, which therefore should also be optimized
for a given problem. Fortunately this meta-optimization
results in similar parameters for quite different problems
of optimization. The meta-optimization for some of the
parameters is described in [18].

A proper choice of the fitness function is of vital
importance for the success of the GA convergence. In [13]
and [18] the fitness function Fy, has been defined as

(f. 9
If1 gl

In this equation f and g are the vector representation of
the experimental and calculated spectra, respectively. The
inner product (f, g), defined with the metric W with matrix
elements W;; = w(|j — i), has the form

Fry = cos(a) = (1)

(f.9)=f'Wg, (2)

and the norm of f is ||f|| = +/(f, f); similar for g. For
w(|j —i|) we used a triangle function [13] with a width of
the base of Aw
o r=li—il/Gaw) forlj—il < jAw
w(j—i)= : . : (3)
0 otherwise.

Important but not decisive is the reliability of the experimental
intensities and the presence of a model capable to explain
the observed spectra. These conditions can however be
released significantly in some cases as will be demonstrated
below.

3. Examples of the success of GA automatic
assignments

The experimental rotationally resolved spectra are obtained
from a high-resolution UV laser spectrometer. Its resolution
is of the order of 0.001cm™! or 25MHz (full width at
half maximum, Apgwgy) at 35000cm™!. This is achieved
by crossing a single-frequency continuous wave laser with a
molecular beam and detecting the laser induced fluorescence.
The details are described elsewhere [1, 31, 32].
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Figure 1. Upper trace: low frequency part of the spectrum of
benzonitrile-Ar. Lower trace: complete rovibronic spectrum.
Intensities are given in arbitrary units. For details see text.

For the simulation of the rovibronic spectra a rigid
asymmetric rotor Hamiltonian was employed [33]. The
parameters to be determined by the GA are the three
rotational constants A, B and C for each electronic state, the
origin frequency vy of the vibronic band and line intensity
determining parameters like rotational temperature, transition
dipole moment orientation and line shape parameters. The
relative intensities were fit to a two-temperature model [18,
34]. The GA software used was the library package PGAPack
version 1.0 [35]. This package performs excellently on
parallel processor systems. Most calculations were performed
on a dual processor PC with two Pentium 2.8 GHz processors
under Linux. Typical computing times on this system are
8 min wall clock time for a full GA fit of a single spectrum?.

3.1. GA fit of very dense rovibronic spectra

In the following we will present an automated GA fit of a
rovibronic spectra, which is very dense due to small rotational
constants. These kind of spectra normally do not represent a
great difficulty for the GA, as will be shown below.

3 On request, the authors make available a full version of their GA-program.
The program has been thoroughly tested under Linux as well several UNIX
versions. The package contains the program and an extensive manual with
the installation procedure. License conditions are applicable if the program is
used.

Table 1. Molecular constants from a GA assignment of the partial
spectrum of the origin of benzonitrile-Ar, the complete spectrum
and an assigned fit. See text for details. The orientation of the dipole
moment vector is determined by the polar angle 6 and the azimuthal
angle ¢. The rotational temperature 7 has been determined from the
relative intensities of the transitions in the spectrum. The origin of
the spectrum is at 36489.04(2) em ™.

Parameter GA fit® GA fit® Assigned
A'/MHz  1343.80(150) 1347.32(19) 1347.58(18)
B”/MHz 1002.55(121) 1004.99(4) 1004.98(14)
C"’/MHz 717.68(108) 718.99(4) 717.70(39)
6/° 22(3) 17.53(7) 20

b/° 82(5) 70.05(2) 70

/K 1.713) 1.68(3) 2
AA/MHz  —32.89(44) —32.61(3) —32.47(23)
AB/MHz 20.60(30) 21.08(16) 20.87(14)
AC/MHz 6.25(15) 6.76(7) 6.80(34)

4Fit to the spectrum in the upper trace of figure 1.
YFit to the spectrum in the lower trace of figure 1.

As an example, and a good demonstration of the power
of the automated fitting procedure, we discuss here the
benzonitrile-Ar spectrum. If due to experimental limitations
only the outermost parts of the P- or the R-branch can be
recorded and the electronic origin of a rovibronic band is
missing, the task of performing an assigned fit gets tedious or
even impossible. However, also in this difficult case the GA
succeeds in finding the global minimum and assigning the
spectrum properly. We chose the spectrum of the electronic
origin of benzonitrile-Ar, shown in the upper trace of figure 1
to demonstrate this. Obviously only the low-frequency side
of the spectrum has been measured with a quite bad signal-
to-noise ratio. Nevertheless, the GA was able to determine
the molecular parameters. The result is given in the first
column of table 1. A GA fit to the complete spectrum with
good signal-to-noise (lower trace in figure 1) yields slightly
different molecular parameters (second column of table 1).
Nevertheless, the quality of the parameters obtained from the
fit to the partial spectrum is surprisingly good.

3.2. Simultaneous GA fits of a number of overlapping
rovibronic spectra

A much more demanding task than a fit of a single rovibronic
spectrum is the simultaneous fit of two (or more) overlapping
spectra. Firstly, the number of transitions within a spectral
interval is multiplied, leading to very dense and congested
spectra. Secondly, the number of molecular parameters is
also multiplied, which generates quite a large parameter
space. Below we show that the GA-spectrum assignments
are capable to handle overlapping spectra from different
isotopomers.

We performed a fit [18] of the rovibronic spectrum of the
isotopomeric pair benzonitrile->°Ne/benzonitrile->’Ne in the
natural abundance of 2°Ne/**Ne (91:9), shown in figure 2.
In this case the GA has the very difficult task of fiting quite
a weak spectrum in the presence of a strong spectrum. The
situation is further complicated by the fact that some of the
lines present in the spectrum are due to benzonitrile monomer
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Figure 2. Upper trace: experimental spectrum of benzonitrile-2
Ne/benzonitrile->’Ne. Lower trace: simulation using the best
parameters from [18]. For signal-to-noise reasons it looks as if
the intensity patterns do not fully match. A second reason is the
presence of high J-state transitions of the monomer in this region.

lines (the electronic origin of the monomer is shifted by about
4.3cm™! to higher frequency). Although the monomer origin
has already been assigned [36], these monomer lines cannot
be predicted with sufficient accuracy, because they belong to
very high J-states.

The molecular parameters were obtained from a four step
GA fit. In the first step Aw/Apway = 10 was employed.
The search limits for the rotational constants were +100 MHz
for both isotopomers. The parameter limits were narrowed
down to one-tenth of the original size, centred around the best
fit value of the first step. While the more abundant species
(benzonitrile-’’Ne) presented no difficulties, the fit of the
weaker component spectrum got trapped in a local minimum.
This had two reasons: the intensity of the sub-spectrum of
benzonitrile->>Ne is only one-tenth of the stronger component
and the additional monomer lines have comparable intensities
to the transitions of the stronger isotopic species. Thus, the
parameter limits for the weaker sub-spectrum had to be
reduced more slowly and in more steps. Firstly, only by a
factor of two, while Aw/Apway was reduced to 7.5. In a
subsequent step Aw/Apwgy = 5 and limits of 20 MHz for
the rotational constants were employed. Finally, the molecular
constants were obtained for Aw/Apwpy = 1.5.

In this case the fit required quite some ‘fine tuning’ which
had to be done manually. Nevertheless, the results of the fit
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of the rovibronic spectrum of benzonitrile-*’Ne /benzonitrile-
22Ne show that even very congested spectra, with one spectral
component much weaker than the other can be assigned
using the GA without any prior knowledge of geometry or
molecular parameters.

The spectrum of 7-azaindole (7AI) was automatically
[19] assigned using the GA-based fit. The rotational constants
obtained from this GA fit are reported in table 2.

Soft deuteration, by adding 20 mbar D,0 to the Ar seed
gas prior to expansion resulted in the spectrum shown in
figure 3 of [19]. Apparently a second band emerges, which
can be assigned to the 7AI[ND] isotopomer. Both bands were
fit together using the GA. The molecular constants of the
first spectrum, like rotational constants, origin frequency, and
Lorentzian width were set fixed, while the global parameters
for the complete fit like temperature(s), weights, baseline,
relative intensity of both spectra etc. were allowed to vary. The
resulting rotational constants for 7AI[ND] for both electronic
states are listed in table 2.

Higher deuteration grades were obtained by three times
refluxing 7AI with an excess of DCI in D,O (38%) and
a subsequent removal of the solvent. This resulted in a
50:50 mixture of mono- and bi-deuterated species. Figure 3
shows the resulting high-resolution spectrum. Two new bands
appeared to the blue of the two isotopomers already described.
From a mass spectrum of the deuterated substance we know,
that the highest deuteration grade was d,. Thus, one of the
new bands belongs to a d-isotopomer, the other one to a
d;-isotopomer, distinct from 7AI[ND]. We fitted the complete
spectrum with the parameters of the first two bands kept fixed
to the above determined parameters. The GA succeeded in
finding the rotational constants for the other two isotopomers.
Their values are given in table 2.

Since the GA performs a lineshape fit of the complete
spectrum, much better information on the linewidth is
gathered than from a lineshape fit to a few individual lines.
In order to obtain the relevant parameters that determine the
intensities in the spectrum, we performed a second GA fit
with a reduced search range and the weight function width
Aw = 0. This resulted in improved values for the angles 6
and ¢ that are connected to the components of the transition
dipole moment.

The determination of the Lorentzian component of the
line width can be improved using the fit of all available
intensities. With a fixed Gaussian contribution of 25 MHz
from the experiment we obtained a Lorentzian contribution
of 64 + 1 MHz for 7AI from a GA analysis. The resulting
Sy lifetime was 2.55 £ 0.03 ns. The lifetime of 7AI[ND] has
been determined from the spectrum of two isotopomers given
in figure 3 from [19] to be 2.34(2)ns, slightly shorter than
of 7AL

4. Summary

In this paper, we have shown that the GA is capable to treat
a wide range of different spectra with complexity ranging
from highly overlapping transitions to coinciding spectra of
different isotopomers. Spectra that are life-time broadened
can also be successfully analysed as long as they contain
sufficient structure. Even if the signal-to-noise ratio is low
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Table 2. Molecular parameters of the electronic origin band of 7-Azaindole as obtained from the GA fit. All values are given in MHz.

7-Al 7-AI[ND] 7-AI[CD] 7-AI[ND][CD]
A7 3928.93(2)*  3807.60(3)*  3794.95(60)  3674.46(24)
B’ 1702.6293)*  1684.722(2)*  1678.73(16)  1662.45(15)
C' 1188.128(5)*  1168.241(2)*  1164.10(8)  1144.89(5)
vo? 0 27553.67(12)  51934.78(98)  80640.38(39)
AA  —18347(11)  —173.77(6)  —172.11(10)  —162.50(8)
AB 1.24(5) —0.48(3) —0.62(4) —0.07(5)
AC  —16.62(3) ~16.95(2) ~16.89(7) —16.21(1)

aValues for the electronic ground states from [37].
bRelative to the electronic origin of 7AI at 34630.74 cm™!.

7AI+ 7AIINDH 7AI[CD]+ 7AI[ND][[CD] Experiment
| ISimulation
il AR A DM o

Simulation 7AIL
MMUMMMMMMW |
l Simulation 7AI[ND]
| ‘ Sin;ulation FAI[CD]
| AL Sirmllatilon 7AI[ND][CD]
0 50000 0o
Frequency/MHz

Figure 3. Rotationally resolved LIF spectrum of 7Al, 7AI[ND], 7AI[CD] and 7AI[ND][CD]. The upper trace gives the experimental
spectrum, the second trace the simulation, using the best fit parameters. The following traces show simulations of the individual spectra of
7Al, 7AI[ND], 7AI[CD] and 7AI[ND][CD]. They are given only for reason of clarity, the fit has been performed using the overall spectrum.
The frequency scale is relative to the origin of 7AI. The electronic origins of the other isotopomers are marked by arrows.

and/or if only a partial spectrum is available the method is
still successful. The GA succeeds in assigning the spectra
and determines the molecular parameters without any prior
knowledge of their values.

The success of the GA procedure of automated fitting is
based on the existence of a good model for the prediction
of the spectra. This seems to be the only drawback until
now. However, there are many cases for which a good
model prediction exists in particular in absorption, cavity
ringdown and laser-induced fluorescence spectra. Based on
our experience with the method, it is clear that in the case
of small and/or local perturbations the main spectral features

that conform to the model can still be extracted and hence the
perturbations are isolated.

The examples discussed above and references cited
[16-21], demonstrate the extreme power of the GA in
automated fitting and assigning very complex spectra, spectra
which can hardly be analysed with the conventional methods.
The computing power of modern PCs is more than adequate
to perform the job in an acceptable time. This new technique
opens the road to the analysis of the complex spectra of bio-
molecules and their building blocks. This has recently been
demonstrated in a study of the biomolecule tryptamine and its
complex with water [22].
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