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New applications of the genetic algorithm for
the interpretation of high-resolution spectra’

W. Leo Meerts, Michael Schmitt, and Gerrit C. Groenenboom

Abstract: Rotationally resolved electronic spectroscopy yields a wealth of information on molecular structures in different
electronic states. Unfortunately, for large molecules the spectra get rapidly very congested owing to close-lying vibronic
bands, other isotopomers with similar zero-point energy shifts, or large-amplitude internal motions. A straightforward
assignment of single rovibronic lines and, therefore, line position assigned fits are impossible. An alternative approach

is unassigned fits of the spectra using genetic algorithms (GAs) with special cost functions for evaluation of the quality
of the fit. This paper decribes the improvements we established on the GA method discussed before (J.A. Hageman, R.
Wehrens, R. de Gelder, W.L. Meerts, and L.M.C. Buydens. J. Chem. Phys. 113, 7955 (2000)). In particular, we succeeded
in obtaining a dramatic reduction in computing time that made it possible to apply the GA process in a large number

of cases. A completely automated fit of a rotationally resolved laser-induced fluorescence spectrum without any prior
knowledge of the molecular parameters can now be performed in less than 1 h. We demonstrate the power of the method
on a number of typical examples such as very dense rovibronic spectra of van der Waals clusters and overlapping spectra
due to different isotopomers. The discussed results demonstrate the extreme power of the GA in automated fitting and
assigning of complex spectra. It opens the road to the analysis of complex spectra of biomolecules and their building
blocks.

Key words: high-resolution spectroscopy, genetic algorithm, biomolecules, structure, van der Waals clusters.

Résumé : La spectroscopie électronique résolue en fonction de la rotation fournit une profusion d’informations relatives
aux structures moléculaires dans les différents états électroniques. Malheureusement, dans les cas de molécules de taille
importante, les spectres deviennent rapidement trés congestionnés en raison des bandes vibroniques adjacentes, d’autres
isotopomeres ayant des déplacements semblables de 1’énergie du point zéro ou des mouvements internes de grandes
amplitudes. II est toutefois impossible de faire des attributions non ambigués des raies rovibroniques simples et, par
extension, des ajustements des positions de raies attribuées. Une autre méthode est de faire 1’ajustement des raies non
attribuées des spectres en faisant appel a des algorithmes génétiques (AG) et en appliquant des fonctions spéciales de
colits pour I’évaluation de la qualité des ajustements. Dans ce travail, on décrit les améliorations qu’on a apporté a la
méthode des AG discutée antérieurement (J.A. Hageman, R. Wehrens, R. de Gelder, W.L. Meerts, et L.M.C. Buydens.

J. Chem. Phys. 113, 7955 (2000)). On a réussi, en particulier, a obtenir une diminution dramatique du temps de calcul
nécessaire pour appliquer le processus d’AG a un grand nombre de cas. Il est maintenant possible de réaliser en moins
d’une heure un ajustement complétement automatique d’un spectre de fluorescence induite au laser et résolue en fonction
de la rotation, sans avoir recours a une connaissance préalable des parametres moléculaires. On a démontré la puissance de
la méthode sur un grand nombre d’exemples typiques, tels que les spectres rovibroniques trés denses d’agrégats de van der
Waals et les spectres comportant des recouvrements en raison d’isotopomeres différents. Les résultats discutés démontrent
la tres grande puissance des AG dans I’ajustement automatique et I’attribution de spectres complexes. Ils ouvrent la voie a
une analyse des spectres complexes de biomolécules et de leur composantes.

Mots clés : spectroscopie a haute résolution, algorithme génétique, biomolécules, structure, agrégats de van der Waals.

[Traduit par la Rédaction]

1. Introduction electronic states. An implicit problem of this method is that for

larger molecules the spectra rapidly get very congested. Ad-

Rotationally resolved electronic spectroscopy providesavalu-  ditionally, overlapping bands due to (i) close-spaced vibronic
able tool for determination of molecular structures in different ~ bands, (ii) other isotopomers with similar zero-point energy
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shifts, or (i) split bands due to large-amplitude internal motions
might complicate the experimental spectrum further. All these
factors make a straightforward assignment of single rovibronic
lines and, therefore, line position assigned fits impossible. In
Neusser’s group (1), a procedure has been developed that di-
rectly fits the experimental data without prior assignments. This
method, which is called “correlation automated rotational fit-
ting”, was pioneered by Levy and co-workers (2—4) and uses the
correlation between the experimental and the simulated spec-
trum as a measure of the quality of the fit. Unfortunately, the
method still has limited applicability. An alternative approach
is unassigned fits of the spectra using genetic algorithms (GAs)
with special cost functions for evaluation of the level of the fit.

It has been shown by Hageman et al. (5) that a GA with
a properly defined cost function was capable of performing
automated fitting of spectra without any prior knowledge of
the molecular parameters. The cost function used by Hageman
et al. (5) is able to smooth the error landscape and, therefore,
allows the GA to locate the global minimum. Unfortunately,
this method is quite time-consuming, compared to other cost
functions like simple least-squares or peak picking functions.
The automated fitting of several overlapping bands requires,
therefore, fast parallel processing and long computing times. In
the present paper, we show how the computing time of the cost
function can be reduced drastically, so that the automated fit of
a rovibronic spectrum can be performed in less than 1 h using
a standard desktop PC. The performance of the GA for spectral
simulations has been described in detail elsewhere (5). A good
introduction to the vocabulary and theory of GAs as a tool for
solving optimization problems can be found in refs. 6 and 7.

In this paper, we extend the automated fit to the case of several
overlapping spectra, i.e., the fitting of molecular parameters that
belong to different molecular species or spectral components.
The method is applied to a synthetic spectrum, which consists
of two completely overlapping bands, to adapt the internal pa-
rameters for the GA fit. The refined method is then applied to
a series of experimental rovibronic spectra of isotopomers of
phenol and benzonitrile, and clusters thereof. The discussed re-
sults demonstrate the extreme power of the GA in automated
fitting and assigning of complex spectra.

2. Experimental

The experimental setup for the rotational resolved laser-
induced fluorescence (LIF) is described elsewhere (8). Briefly,
it consists of a ring dye laser (Coherent 899-21) operated with
Rhodamine 110, pumped with 6 W of the 514 nm line of an
Art-ion laser. The light is coupled into an external folded ring
cavity (9) for second-harmonic generation (SHG). The molecu-
lar beam is formed by expanding the vaporized sample, seeded
in 400— 1000 mbar of argon (1 bar = 100 kPa), through a 70 um
hole into the vacuum. The molecular beam machine consists of
three differentially pumped vacuum chambers that are linearly
connected by skimmers (1 and 3 mm, respectively) to reduce the
Doppler width. The molecular beam is crossed at right angles
in the third chamber with the laser beam 360 mm downstream
of the nozzle. The resulting fluorescence is collected perpen-
dicular to the plane defined by the laser and molecular beam by
an imaging optics setup consisting of a concave mirror and two
plano-convex lenses. The resulting Doppler width in this setup
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is 25 MHz (fwhm). The integrated molecular fluorescence is
detected by a photomultiplier tube, and the output is discrim-
inated and digitized by a photon counter and transmitted to a
PC for data recording and processing. The relative frequency
is determined with a quasi-confocal Fabry—Perot interferom-
eter with a free spectral range (FSR) of 149.9434(56) MHz.
The FSR was calibrated using the combination differences of
111 transitions of indole for which the microwave transitions
are known (10, 11). The absolute frequency was determined by
recording the iodine absorption spectrum and comparing the
transitions to the tabulated lines (12).

3. Theory

3.1. The Hamiltonian

For the simulation of the rovibronic spectra, a rigid asym-
metric rotor Hamiltonian was employed (13):

(1] H=AP?+BP}+CP?

Here, Py (g = a, b, c) are the components of the body-fixed an-
gular momentum operator, and A, B, and C are the three rota-
tional constants. The resulting Hamiltonian matrix is factorized
into four submatrices using the Wang transformation (14). This
enhances the computation speed because of the reduced dimen-
sion of the matrix to be diagonalized. The transition frequencies
are determined by the rotational constants A, B, C in both elec-
tronic states and by the frequency of the origin vq of the vibronic
band. The line intensities depend on the rotational temperature,
the orientation of the transition dipole moment with respect to
the inertial axes, and, in some cases, the nuclear spin statistic.
The temperature dependence of the intensities might be con-
sidered in a simple one-temperature model, which is sufficient
for simulation of most of the rovibronic spectra, or in a more
advanced two-temperature model, which should be applied in
cases where line shape parameters are fitted (cf. Sect. 4.4.2).
The orientation of the dipole moment vector is determined by
the polar angle 6 and the azimuthal angle ¢.

3.2. The genetic algorithm

A description of the GA used in this investigation can be
found in ref. 5. The GA library PGAPack version 1.0, which
can run on parallel processors, was used (15). The calculations
were performed on four processors of a SUN UltraSPARC
333 MHz and on a 2.6 GHz PC with two processors under
Linux. The GA is basically a global optimizer, which uses con-
cepts copied from natural reproduction and selection processes.
For a detailed description of the GA, the reader is referred to
the original literature (16—18). We introduce the elements of the
GA that will be used in the following.

» Representation of the parameters: The molecular param-
eters are encoded binary or as real data type, each pa-
rameter representing a gene. A vector of all genes, which
contains all molecular parameters, is called a chromo-
some. In an initial step the values for all parameters are
set to random values between lower and upper limits,
which have to be chosen by the user. No prior knowledge
of the parameters is necessary. A total of 300—500 chro-
mosomes are randomly generated, forming a population.
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* The solutions (chromosomes) are evaluated by a fitness
function (or cost function), which is a measure of the
quality of the individual solution. The fitness function
that is used here is described in Sect. 3.3.

* One optimization cycle, including evaluation of the cost
of all chromosomes, is called a generation. Generally,
convergence of the fitin our case is reached after 300—500
generations.

¢ Pairs of chromosomes are selected for reproduction, and
their information is combined via a crossover process.
This crossover might take place as a one-point, two-point,
or uniform crossover. A crossover just combines informa-
tion from the parent generations and basically explores
the error landscape.

e The value of a small number of bits is changed ran-
domly. This process is called mutation. Mutation can be
viewed as exploration of the cost surface. The best so-
lutions within a generation are excluded from mutation.

S w) X gl +r)
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This elitism prevents already good solutions from being
degraded.

The performance of the GA depends on internal parame-
ters like mutation probability, elitism, crossover probability, and
population size, which therefore should also be optimized for
a given problem. Fortunately, this meta-optimization results in
similar parameters for quite different problems of optimization.
The meta-optimization for some of the parameters is described
in Sect. 4.2.

3.3. The fitness function
3.3.1. Definition

In the current paper we will use both the terms fitness function
(Fyg) and cost function (C¢,), where C e = 100(1 — Fg), to
characterize the quality of a solution. The fitness function for the
fit of the spectra with N points using the GA has been defined in
eq. [5] of ref. 5 (in which C s, is identical to F's, in this paper)
as:

21 Fp

In this equation, f and g represent the experimental and
calculated spectra, respectively. The function w(r) determines
the sensitivity of the fitness function for a shift of the two spectra
relative to each other. This can be rewritten by interchanging
the sums and substituting i 4+ r = j as

ZzNj fiWijg;
\/ 20 fiWis fj\/ >0 8iWis;

Bl Fre=

where
(4] Wij =w(j—1il)

and f; = f(i) and g; = g(i).

F g in eq. [3] can be interpreted as the cosine of the “angle”
between the experimental and the theoretical spectrum. With
the column vectors

51 f=, fw’
g=(g1,8,-en)"

and the symmetric matrix W, which has the matrix elements
Wi, we can write:

(f. 8
lfI gl

Here the inner product (f, g) is defined with the metric W as:

71 (f.e)=f"wg

[6] Fre = cos(a) =

S w S f O£+ w) TN g gt + )

and the norm of f as | f]| = /(f, f); similarly for g. For

w(r) we used a triangle function (5) with a width the base of
Aw:

) 1—=1rl/12Aw) for|r] < 1/2Aw
(8] w(r) = { 0 otherwise

In order for Fy, to serve as a good fitness function for the
quality of the fit, it should have the property that it reaches its
maximum value if and only if f and g are identical (apart from
anormalization). This condition is fulfilled provided the matrix
W is positive definite. In Appendix A, we show this holds if
the Fourier transform of the function w is positive. The Fourier
transform of w(r) defined in eq. [8] is

o0 . A A
91 () =/ e 2y (r) dr = —— sinc? <wm)
o0 2 2
where sinc (x) = sin (x) /x, so w(t) > 0.
3.3.2. Numerical evaluation of the fitness

Let us now consider the numerical evaluation of the fitness
function Fy, from eq. [3] in its relation with the calculated
spectrum. The calculated spectrum is obtained by a convolution

of each calculated transition k with intensity s by the line shape
function L:

N
[10] g;= ZijSk
k=1
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with L jr = I(|j — k). In matrix notation this can be rewritten
as

[11] g=Ls

As it turned out, at least 50% of the computing time in ref. 5
was used to perform a straightforward calculation of Fr, from
eq. [3]. For a typical GA fit, F s, must be calculated 150 000
times. Hence, a considerable reduction in computing time can
be obtained by a more efficient calculation of Fpy,. We start
with a rearrangement of the order of the evaluation of eq. [6]
and using the properties of W and L. The numerator of eq. [6]
is evaluated first:

[12] (f.Ls)= fTWLs = fs

131 f=f"wL

From eqs. [12] and [13] it is obvious that the effect of w(r)
can be interpreted as an effective line broadening of the exper-
imental3 spectrum. The use of the broadening function w(r)
results in a smoother error landscape, which allows an easier
optimization of the GA process. It should be noted that the
simple least-squares fitness function, where all spectral points
have the same weight, is also described by F, for the limiting
case that the width of w(r) is zero and W becomes the identity
matrix.

The transformed experimental spectrum from eq. [13] has to
be evaluated only once. Formally, the sum on the right-hand side
of eq. [12] runs over all N points of the spectrum. However, the
stick spectrum array is a very sparse one: Typically, N is of the
order of 60 000 — 250 000, while the number of sticks (nonzero
values of si) is only about 1000—3000. Therefore, the use of
eq. [12] strongly reduces the necessary computing time. The
reduction of computing time is actually more dramatic since the
double sum in the numerator of eq. [3] over N points is reduced
to a single sum over a sparse array in eq. [12]. Furthermore, the
theoretical spectrum itself {g;} does not have to be calculated
anymore. The first term in the denominator of eq. [3] also has
to be evaluated only once. The second term in this denominator
has to be calculated every time a value of Fy, is needed in the
process of the GA. Fortunately, this term can also be expressed
in terms of the stick spectrum s ({sx}):

[14]1  lgl> =sT(LTWL)s

Since (LTW L) is a banded matrix, the evaluation of || g | 2 from
eq. [14]is in practice almost linear in the number of sticks rather
than quadratic. Again, (LW L) has to be evaluated only once.
It turned out that the effect of the above-discussed modifications
of the calculation of Fyg was that its calculation time became
negligible with respect to the total computing time.

The use of the stick spectrum, described in this section, is
limited to applications in which the line shape parameters, like
Gaussian or Lorentzian width in the Voigt profile, do not have to
be fitted. Inclusion of the line width parameters in the fit requires

3A different arrangement of the equations shows that w(r) also can be
interpreted as an effective broadening of the calculated spectum g.
Actually, the experimental and the calculated spectra are broadened
relative to each other.
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the reevaluation of eq. [12] during the GA process, which in
practice dramatically increases the computing time. Therefore,
a line width fit should be performed after a determination of all
other parameters in a separate fitting procedure. An example of
this will be given in Sect. 4.4.2.

3.3.3. Further reduction of computing time

Further reduction of the computing time for the fitness func-
tion is made possible by setting the maximum J value in the
evaluation of the simulated spectrum dynamically. In the first
step of the evaluation, a maximum J value is taken, which is
specified by the user. In the subsequent steps, the necessary Jmax
is computed from the temperature and the rotational constants
using a cut-off factor of 0.001 for the intensities. In this way, the
size of the matrices to be set up and diagonalized in the course
of the computation of the simulated spectrum is minimized.

4. Results and discussion

4.1. Influence of the width (Aw) of the weight function
w(r) on the convergence of the GA

The relative broadening of the spectra, introduced by the
weight function w(r), described in Sect. 3.3.2, critically deter-
mines the ability of the GA to converge to the global minimum
and also the speed of convergence. The smoothing of the error
landscape allows the sensing of regions far from the minimum.
In the first step, the function w(r) should be chosen relatively
broad; Aw ~ 15-20 times the line widths of an individual
rovibronic line in the spectrum (A;y,). In this way, a first set of
molecular parameters is obtained, which still has to be refined.
This is done by decreasing Aw and narrowing the limits of the
parameter space to be searched in the fit. Decreasing Aw im-
proves the accuracy of the molecular parameters obtained from
the fit, while narrowing the parameter space leads to an im-
proved sampling in the region of the minimum. This of course
is the critical step in the procedure. Too strong narrowing of the
parameter space leads to premature convergence of the fit —
with a high probability into a local minimum.

We performed a fit of a synthetic spectrum that consisted of
two overlapping sub-spectra. It was generated using the molec-
ular parameters from the “Best value” column in Table 1. A
single-temperature model for the calculation of the intensities
has been used. The maximum J value used in the computation
of the cost function for this spectrum is 22. Table 2 lists the
results of five GA calculations stopped after 500 generations,
each started with a different randomly generated initial set of
parameters. In Table 2, Aw /Ay, = 20. This process has been
repeated for different values of Aw/Ay,,. The convergence of
the fit using different Aw/A;,, is shown in Fig. 1.

A ratio of Aw/Aj, = 20 leads to convergence for all five
initial seeds into the same minimum. Inspection of the parame-
ters in Table 2 shows that the minimum found is the global one.
Nevertheless, the deviations of the fitted parameters from the
best values of Table 1 are quite large, owing to the large value
of Aw, which leads to broad minima at the cost surface. As
seen in Fig. 1, smaller values of Aw may lead to convergence
into other (local) minima of the cost surface. With Aw/A,, of
10, still three of the fits converge to the global minimum, with
aratio of 5, only one fit converges to the global minimum, and
with 2.5, none of the fits converges to the global minimum.
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Table 1. Input for the genetic algorithm (GA) fit of the synthetic

spectrum.
Parameter Best value Lower limit Upper limit Coupling ¢
Parameters of the first spectrum
Al 3000.00  2900.00 3100.00
By 1000.00 910.00 1100.00
cy 800.00 700.00 900.00
T, 2.00
0 54.74 0.00 90.00
lo3s 45.00 0.00 90.00
il 80000.00  79000.00  81000.00
AA, 100.00 10.00 150.00
AB, —50.00  —150.00 50.00
AC, —-50.00  —150.00 50.00
Gaussian width 20.00
Parameters of the second spectrum
Al — A] 10.00 5.00 1500 D
BY — BY 5.00 0.00 1000 D
cy—-cyf —5.00 —10.00 0.00 D
T 2.00 C
0, 56.74
[0 44.00
Al — AvlY 500.00 0.00 1000.00 D
AAA 2.00 —3.00 300 D
AAB —1.00 —3.00 300 D
AAC 1.00 —3.00 300 D
Gaussian width 20.00 C
Ratio scaling 1.00 R

Note: All values are in MHz except 7, which is in K, and 6 and ¢, which
are in degrees. The Lorentzian contribution to the line width was sert to zero.
AA| = A} — A; ABy and AC| correspondingly. AAA = AAy — AA| =

(A5 — 43) (4] - AY); et

4C, parameters of spectrum 2 are taken the same as those of spectrum 1; D,
parameters of spectrum 2 are those of spectrum 1 with the corresponding

value in the table added; R, parameters of spectrum 2 are those of spectrum
1 multiplied by the corresponding value from the table.

In the next step, the fit has to be refined with a limited pa-
rameter space centered around the best fit (fit No. 4 in Table 2)
and with successively smaller values of Aw. We could not es-
tablish a hard criterion for the reduction of the parameter space.
A successfull reduction depends critically on the quality of the
first series of fits. On the other hand, the parameter space cannot
always be reduced by the same factor for each of the param-
eters. As a rule of thumb, we found that the parameter limits
can be reduced to one-tenth of the initial range. This reduction
depends on the quality (signal-to-noise (S/N)) of the spectrum
and has to be checked carefully after each successive step. Table
3 gives the new input parameters for a refined fit, using a ratio
Aw/Ap, =5, along with the result of the best of five fits with
different starting populations.

As can be inferred from Table 3, the fit with the reduced
line width ratio and the reduced parameter space is already
quite close to the “real” values given in Table 1. It can further
be improved by decreasing Aw/Aj,, and the parameter search
space in an iterative manner until convergence for the molecular
parameters is reached.

To generate a more realistic spectrum, we added a randomly

Gaussian-distributed noise to the synthetic spectrum, resulting
in a S/N of 10:1 for the strongest lines. The GA performed
equally well in this case, yielding the molecular parameters
given in the last column of Table 3. The deviations of the pa-
rameters from the true values are similarly small as for the
“perfect” spectrum without noise.

4.2. Meta-optimization of the internal GA parameters

The need to optimize the internal parameters of the GA (meta-
optimization) for a given problem has been discussed to be a
major drawback of this method (19). The speed and conver-
gence of GAs depend on the data representation (binary or real),
the crossover type (one-point, two-point, uniform), the size of
the starting population, the rate of elitism, and the mutation
probability. Several other factors that also influence the perfor-
mance of the GA fithave been kept fixed. They will be discussed
shortly. The crossover probability was chosen as 85%. Selection
of the best solutions is performed via a tournament selection,
which means that a random subset of the chromosomes is taken,
and within each subset the chromosomes are selected by their
cost. Duplicates within one generation are allowed for.
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The “natural” choice for a genetic algorithm is a binary rep-
resentation of the data. It has been discussed that a direct repre-
sentation of the parameters as real-type data is advantageous if
the type of data to be fitted is real. All tests performed with the

Table 2. Results of five successive GA evaluations of the synthetic spectrum from Table 1.

Parameter Best value  Fit No. 1 Fit No. 2 Fit No. 3 Fit No. 4 Fit No. 5
Parameters of the first spectrum

Al 3000.00  2996.19  2998.14 299853  3000.68  2996.38
B 1 000.00 999.71 998.14 999.12 998.92 999.51
cy 800.00 801.49 799.90 797.95 800.88 800.68
6, 54.74 56.07 53.09 53.38 54.80 57.68
&> 45.00 45.17 4468 4542 4571 4229
v 80000.00 79987.29 7998143 7998534 8000293  79997.07
AA, 100.00 101.61 101.81 101.42 99.46 101.81
AB, —50.00 —49.36 —48.58 —50.34 —49.17 —49.85
AC, —50.00 —49.95 —50.05 —49.27 —50.64 —50.34
Parameters of the second spectrum

Ay — A7 10.00 13.53 11.22 11.93 9.52 15.07
B} — B/ 5.00 6.42 7.03 5.87 5.68 5.52
cy—cy —5.00 —5.31 —5.99 —245 —6.34 —6.29
6, 56.74 55.73 58.32 56.95 57.39 59.54
¢, 44.00 47.03 42.68 43.56 4434 42.09
Av — AvY 500.00 505.38 520.04 509.29 488.76 501.47
AAA 2.00 0.49 0.71 0.54 2.92 —1.09
AAB —1.00 —1.72 —2.44 —0.19 —2.00 —0.09
AAC 1.00 1.23 1.02 0.23 2.13 1.17
Cre 0.000 0.394 0.526 0.397 0.279 0.571

Note: The starting set of parameters was generated randomly and the search limits are from Table 1,
Aw/Ap, = 20.

Table 3. Results of a GA evaluation of the synthetic spectrum of Table 1 with
narrowed search regions and Aw/A;, = 5.

Parameter Best fit Lower limit ~ Upper limit  Best fit with noise
Parameters of the first spectrum

Al 3 000.19 2990.00 3 010.00 3000.01
By 1000.22 990.00 1 010.00 1 000.01
cy 800.05 790.00 810.00 799.76
0 55.11 40.00 60.00 53.74
¢ 44.63 40.00 60.00 45.47
v(()l) 80 000.05 79 950.00 80 150.00 80 000.44
AA, 100.11 90.00 110.00 99.91
AB, —50.12 —60.00 —30.00 —49.88
AC, —49.94 —60.00 —30.00 —50.12
Parameters of the second spectrum

Al — A 9.66 5.00 15.00 10.44
B) — BY 4.59 0.00 10.00 5.18
cl—-cy —5.15 —10.00 0.00 —4.80
0, 56.99 40.00 60.00 56.30
¢ 45.08 40.00 60.00 43.17
Ave — Av? 497.17 400.00 600.00 501.66
AAA 2.08 0.00 4.00 1.78
AAB —0.85 —4.00 0.00 -1.17
AAC 0.97 0.00 4.00 1.15
Cyqe 0.162 — — 0.297
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data set given in Table 1 show that the binary encoding of the
parameters leads to a smaller cost and converges more rapidly,
compared to real-type representation. For the real-type data en-
coding, anumber of runs do not even reach the global minimum.
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Fig. 1. Dependence of the convergence of five fits of a synthetic spectrum that consists of two overlapping sub-spectra with different

starting populations on the ratio Aw/Ay,,.

50+

Aw/A, =20

D‘&?

AW/AIW =10

0 200 400
No. of generations

A change of the encryption depth for the binary representation
from 10 bit to 20 bit virtually does not change the performance
of the GA. A Gray code (20) is used throughout the present in-
vestigations in order to ensure a Hamming distance of one (21).
Comparing uniform and two-point crossover, a clear advantage
of the two-point crossover regarding speed of convergence and
fitness of the solutions was found. Just in the case of real-type
encoding, the uniform crossover forces more runs of the GA
into the global minimum than the two-point.

The first row of Fig. 2 shows the convergence of five fits with
different starting populations as a function of the number of
generations for different sizes of the starting population, using
the parameters from Table 1 and Aw /Ay, = 20 (cf. Sect. 4.1).
The elitism was kept at 50% and mutation probability at 0.05
in these calculations. For a population of 300, the best value of
the cost function was 0.15, the mean of five runs using different
starting populations was 0.35, and the cost function dropped
below 0.5 after 372 generations. The larger population of 450
had a slightly better mean of 0.30 and dropped below 0.5 after
324 generations. The largest population we investigated con-
tained 600 chromosomes and resulted in a mean of the cost
function of 0.21 and dropped below 0.5 after 278 generations.
The better performance regarding the convergence as a function
of the number of generations for the larger populations is more
than compensated for by the increasing CPU time for increasing
populations. One run for a population of 300 takes 21 min, for a

0 200 400
No. of generations

population of 450 takes 43 min, and for 600, 52 min using four
processors on a SUN UltraSPARC 333 MHz. All subsequent
computing times are for this configuration. Almost the same
computing time was attained on a dual processor PC with two
Pentium 2.6 GHz processors.

The variation of elitism between 30% and 70% is shown in
the second row of Fig. 2. The size of the population is kept fixed
at 300 for these fits. An elitism of 30% means that the best 30%
of one generation are passed unchanged to the next generation.
Elitism helps to prevent good solutions from being lost from
one generation to the next. As can be inferred from Fig. 2, a fit
with an elitism of 30% converges more rapidly than one with
50% or 70%. Nevertheless, the mean cost function of five runs
for an elitism of 50% is slightly better. For an elitism of 70%,
the mean cost function never drops below 0.5 because too many
bad solutions are kept. With regard to CPU time, an elitism of
30% is the most time-consuming (36 min) compared to 50%
(21 min) and 70% (12 min).

The third row of Fig. 2 shows the variation of convergence
with the mutation probability. Population size is kept fixed at
300 and elitism at 50%. Mutation is introduced to allow for
a thorough exploration of the whole cost surface and prevents
the algorithm from prematurely converging into a local mini-
mum. With a mutation probability of 0.01, the mean value of
the cost function is 0.15, and the cost function drops below 0.5
after 204 generations. With a mutation probability of 0.05, the
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Fig. 2. Convergence of the GA as a function of population size (p), rate of elitism (e), and mutation probability (m). The cost function

Cy, is plotted on the vertical axis.
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m=0.05

p =600
e=50%
m =0.05
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mean of the cost function increases to 0.35 (drops below 0.5
after 372 generations), while for a mutation probability of 0.10,
the mean cost function value is 1.00. Although all five runs
converged to the same global minimum for mutation probabil-
ities of 0.01, 0.05, and 0.10, the mutation probability of 0.01
performed best, considering mean cost function and speed of
convergence. However, one has to be careful not to underes-
timate the risk of converging to a local minimum due to bad
exploration of the cost surface. The CPU time as a function of
the mutation probability virtually does not change (21 min for
probabilities of 0.01, 0.05, and 0.10).

To conclude, the population size should not exceed 300 be-
cause of the bad time performance with larger populations,
which is not compensated by a much better convergence of
the algorithm. An elitism of 30% is advantageous regarding the
convergence, but also very time-consuming. The best trade-off
between time and convergence performance is found at 50%
elitism. A mutation probability of only 0.01 leads to a very fast
convergence, with very exactly determined parameters. Never-
theless, in cases where many local minima at the cost surface
are present, such a low mutation probability might lead into a
local minimum. Reduction of the value of this parameter has
therefore to be performed with great care.

No. of generations

400 0 200 400

No. of generations

4.3. GA fit of very dense rovibronic spectra

In the following, we will present the automated-GA fits of
some rovibronic spectra, which are very congested due to small
rotational constants. These spectra normally do not represent a
great difficulty for the GA, as will be shown in the next sections.

4.3.1. [7-D]Phenol—N;

We recently performed a fit of the rovibronic spectra of sev-
eral isotopomers of the phenol—nitrogen cluster (22). The ni-
trogen is located in the plane of the phenol, hydrogen bonded to
the OH group with a bond length of 225.5 pm. In the following,
we present the rovibronic spectra of different [7-D]phenol clus-
ters. [7-D]Phenol means replacement of hydrogen by deuterium
at the hydroxy group of phenol. The choice of [7-D]phenol in-
stead of the normal isotopomer was made because of the longer
lifetime of the deuterated isotopomers, yielding smaller line
widths and, therefore, better signal-to-noise ratios. The rota-
tionally resolved electronic spectrum of the electronic origin of
[7-D]phenol—Nj is shown in trace (a) of Fig. 3. The observed
spectrum consists of about 400 clusters of lines, with only a few
single rovibronic lines (cf. the simulated stick spectrum shown
in trace (e) of Fig. 3).

An assigned fit for such a congested spectrum is very dif-
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Fig. 3. (a) Experimental rotationally resolved electronic spectrum of the electronic origin of phenol—N,. (b) Simulation, using the
parameters given in Table 4. (¢) Expanded view of trace (a). (d) Simulation in the same spectral range with Voigt-convoluted line shapes,
using a Gaussian width of 26 MHz and a Lorentzian width of 39.4 MHz. (e) Stick spectrum in the given spectral range. Intensities are

given in arbitrary units.
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ficult because the shape changes considerably upon moderate
changes of the molecular parameters. The initial search range
for the parameters in the GA fit was obtained from a preliminary
ab initio calculation. This calculation was based on a “hydro-
gen” structure as proposed by Ford et al. (23). The molecular
parameters obtained from the GA fit with Aw /Ay, = 5 are
presented in the second column of Table 4. The values given
and the quoted uncertainties are the result of statistics on 10
independent GA runs, with different initial seeds, i.e., differ-
ent starting populations of the evolution. In a second step, we
used the result of the GA calculation to assign quantum num-
bers to the individual transitions and clusters of lines. Because
of the high quality of the GA fit, this was possible in spite of
the large number of overlapping lines. With these line position
assignments, a second fit to the parameters of the rigid rotor
Hamiltonian of eq. [1] was performed. The latter fit yields bet-
ter values, in particular for the uncertainties of the parameters.
For most parameters, the values obtained from the assigned fit
(Table 4, column 3) agree within their uncertainties to the cor-
responding GA results. This spectrum presents an example in
which the rovibronic spectrum could be fitted by the GA in a
single step, without further refinement of Aw.

Table 4. Comparison of the molecular
parameters of the phenol—nitrogen cluster as
obtained from an assigned fit and from the GA

fit.
Parameter GA fit Assigned fit
A" (MHz) 4071.06 (13)  4072.18(25)
B” (MHz) 647.89(2) 648.01(4)
C” (MHz) 559.13(2) 559.26(4)
T (K) 1.6(5) 2.0
0 (°) 62.53(7) 60.0
AA (MHz) —140.99(6) —141.560(91)
AB (MHz) 15.71(1) 15.708(13)
AC (MHz) 8.70 (1) 8.671(9)

The computation time for the GA fit of the spectrum with
12 parameters and the direct evaluation of F'r, by the full sum
of all data points (eq. [3]) was 12 min. It could be reduced
to 5 min using the sparse stick array. Thus, a very complex
spectrum could be completely fit by the GA within 50 min of
computation time.
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Table 5. Molecular constants from a GA
calculation and an assigned fit of the
rovibronic spectrum of the electronic origin of

phenol—Ar.
Parameter GA fit Assigned fit
A" (MHz) 1779.04(46)  1779.23(13)
B” (MHz) 1119.40(24)  1119.315(76)
C” (MHz) 904.82(9) 904.672(193)
T (K) 1.33 1.5
0 (°) 18.24(7) 20
¢ (°) 25.76(93) 30
AA (MHz)  —43.43(28) —43.516(42)
AB (MHz) 25.15(13) 25.191(31)
AC (MHz) 23.24(6) 23.227(20)

4.3.2. [7-D]Phenol—Ar

The phenol—Ar cluster is an example of a weakly van der
Waals-bonded molecular cluster. Owing to the weak binding
forces, centrifugal distortion (24,25) might play a role in the
determination of the molecular parameters. We included the
five quartic centrifugal distortion constants for each electronic
state in the fit. Compared to an equivalent fit without centrifu-
gal constants, no significant improvement of the fit could be
obtained. We performed the GA fit, where the azimuthal and
polar angles of the transition dipole moment were allowed to
vary between 0° and 90°, i.e., within their complete definition
range. Further parameters to be varied were the rotational con-
stants of ground and excited state, the center frequency,* and
a single temperature. We used Aw/A;, = 10. As in the case
of the [7-D]phenol—N; spectrum, the spectrum could be fit-
ted without refining Aw. The resulting molecular parameters
from the GA and from an assigned fit are presented in Table
5. While the rovibronic spectrum of phenol is of pure b-type,
the argon atom, which is located above the aromatic ring and
shifted slightly towards the hydroxy group, switches the axes,
so that the transition moment in the cluster is oriented nearly
along the inertial c-axis. From the parameters given in Table 5,
we calculated the perpendicular ro-distance of the argon atom
to the aromatic ring with the program pKrFit (26). In the elec-
tronic ground state this distance is found to be 352.1 pm, while
in the electronically excited state the distance is slightly reduced
to 350.3 pm. Both values are in good agreement with distances
found for other aromatic — noble gas clusters.

The GA fit of 10 molecular parameters was terminated
in 6 min, using the sparse stick array implementation described
in Sect. 3.3.2. Doubling of the dimension of the fitness
surface by adding the 10 centrifugal distortion constants re-
sulted in a computation time of 9 min. With the chosen ratio
of Aw/Ay, = 10, all five initial seeds converged to the same
minimum within 500 generations.

4.3.3. Benzonitrile—Ar

If due to experimental limitations only the outermost parts
of the P- or the R-branch can be recorded, and the electronic
origin of a rovibronic band is missing, the task of performing
an assigned fit gets tedious or even impossible. However, also

4The value for the center frequency is omitted in all tables, as it is a
relative number.

813

Fig. 4. Upper trace: low-frequency part of the spectrum of
benzonitrile—Ar. Lower trace: complete rovibronic spectrum.
Intensities are given in arbitrary units. For details see the text.

Short scan of benzonitrile-Ar

Full scan of benzonitrile-Af

0 ' 25 000 50 000
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in this difficult case the GA succeeds in finding the global min-
imum and assigning the spectrum properly. As an example we
chose the spectrum of the electronic origin of benzonitrile—Ar,
shown in the upper trace of Fig. 4. Obviously, the low-frequency
side of the spectrum has been measured with a quite bad signal-
to-noise ratio. Nevertheless, the GA was able to determine the
molecular parameters. The result is given in the first column of
Table 6. The computing time was the same as for a complete
spectrum discussed in the previous section. The electronic ori-
gin is found by the GA to be 8000 MHz to the blue of the
high-frequency end of the spectrum. A GA fit to the complete
spectrum with good signal-to-noise (lower trace in Fig. 4) yields
slightly different molecular parameters (second column of Ta-
ble 6). Nevertheless, the quality of the parameters obtained from
the fit to the partial spectrum is surprisingly good. The only pa-
rameters that have relatively large deviations are the polar and
azimuthal angles of the transition dipole moment. This is obvi-
ously due to the fact that the band type cannot be determined
accurately from a fit of a single branch only.

Results from previous studies on benzonitrile—Ar are also
given in the last column of Table 6. The current results for the
excited state are more accurate than those of Helm et al. (1) be-
cause of the substantially lower resolution of their experiment.
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Table 6. Molecular constants from GA assignments of the partial spectrum
of the origin of benzonitrile—Ar and the complete spectrum and from an

assigned fit.

Parameter GA fit¢ GA fit Assigned fit  Other work
A” (MHz) 1343.80(150)  1347.32(19)  1347.58(18)  1347.789(12)°
B” (MHz) 1002.55(121)  1004.99(4) 1004.98(14)  1006.020(9)¢
C” (MHz) 717.68(108) 718.99(4) 717.70(39) 719.817(2)¢
0 () 22(3) 17.53(7) 20

¢ (°) 82(5) 70.05(2) 70

T(K) 1.71(3) 1.68(3) 2

AA (MHz)  —32.89(44) —32.61(3) —32.47(23)  —33.8(36)¢
AB (MHz) 20.60(30) 21.08(16) 20.87(14) 21.4(27)¢
AC (MHz) 6.25(15) 6.76(7) 6.80(34) 10.2(75)¢

Note: See text for details.

@Fit to the spectrum in the upper trace of Fig. 4.
bFit to the spectrum in the lower trace of Fig. 4.

¢From ref. 27.
4From ref. 1.

Our ground-state values do not completely agree with the very
accurate microwave results from Dreizler and co-workers (27).
This is an indication that the uncertainties in our parameters,
based on the statistical behavior of the GA fits, are slightly
underestimated.

4.4. Simultaneous GA fit of two overlapping rovibronic
spectra

A much more demanding task than a fit of a single rovibronic
spectrum is the simultaneous fit of two (or more) overlapping
spectra. First of all, the number of transitions within a spectral
interval is doubled, leading to very dense and congested spectra.
Secondly, the number of molecular parameters is also doubled,
which generates quite a large parameter space.

Overlapping spectra occur in particular if several isotopic
species are investigated. While mass resolution techniques like
resonance two-photon ionization with time-of-flight mass spec-
troscopy are able to separate the isotopic species with a different
mass, the technique normally lacks experimental resolution ow-
ing to the pulse-width-limited resolution used in these studies.
On the other hand, mass selection cannot be combined with
high-resolution LIF spectra. In the next sections, we show that
the GA spectrum assignments are capable of handling overlap-
ping spectra both from different isotopomers as well as from
different conformers.

4.4.1. [7-D]['80]Phenol and [7-D]['O]phenol

Further tests of the GA were performed with experimental
spectra consisting of two sub-spectra, which originate from two
isotopomers. As a first exam]ple we chose the rovibronic spec-
trum of ['80][7-D] Jphenol/[ [1001[7- [7-D]phenol, which had been
assigned and published before (26). The isotopic enrichment of
the phenol sample resulted in an isotopic purity of about 50%
for the oxygen isotopes and of 100% for hydrogen. Since the
spectral shift of the two spectra is about 3 GHz, the spectra com-
pletely overlap within the rovibronic contour. Both sub-spectra
are of pure b-type, and thus the polar and azimuthal angles 6 and
¢ do not need to be fit in this case. The rovibronic lines have
a Voigt profile with a Gaussian line width of 20 MHz and a

Lorentzian contribution of 12 MHz because of the fluorescence
lifetime of 12.5 ns. The maximum J value in the calculation
of the cost function is 15. Due to the smaller number of lines
in the calculated spectrum, the computation time for the cost
function drops drastically, and throughout all calculations on
the phenol system, a population of 600 could be employed.
The method for the GA evaluation employed is the same as
described in Sect. 4.1. An initial fit was performed with a large
value of Aw/A, = 15. Table 7 gives the results of a GA fit,
the limits of the molecular parameters used in the fit, and the
results of a previously published assigned fit for comparison.
Four GA evaluations with different starting values all converge
to the same global minimum. Thus, Aw/A,, was chosen cor-
rectly in the first step of the analysis. The comparison with the
results from an assigned fit nevertheless shows deviations of
about 2 MHz for the inertial parameters and their changes upon
electronic excitation.

A second fit is performed with Aw/Aj,, = 4. The limits for
the rotational constants and AA were reduced by a factor of 5
compared to the fit with Aw /A, = 15, while the limits for AB
and AC, which were already quite small, were reduced only by
a factor of approximately 2. The results given in Table 8 clearly
show not only that the GA fit converged to the global mini-
mum, which is determined unambiguously from the assigned
fit, but that the values of the inertial parameters are reproduced
within their experimental accuracies. Figure 5 shows the exper-
imental spectrum, along with the simulated spectra, using the
parameters from the GA fit and from the assigned fit.

One run of the GA calculation with a population size of 600,
a mutation probability of 0.05, and an elitism of 50% takes only
about 10 min. This is due to the small Ji,,x in the calculation
of the simulated spectrum. With an initial seed of five differ-
ent starting populations and two successive fits with different
line width ratios and parameter spaces, a complete automated
assignment was performed in less than 2 h.

In summary, in a two-step fit the GA evaluation succeeded in
determining all molecular parameters for both completely over-
lapping spectra of [180][7-D]phen01 and [160][7-D]phenol.
The accuracy is comparable to an assigned fit of individual
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Table 7. Fit of the inertial parameters of ['*O][7-D]phenol/['®O][7-D]phenol
using the GA along with the limits of the parameters used in the fit and the
previously published parameters from an assigned fit of the individual line
positions.

Parameter  GA fit Lower limit  Upper limit ~ Assigned fit (26)
['*O][7-D]Phenol

A" 5610.70 5550.00 5650.00 5607.181(200)
B” 2408.55 2350.00 2450.00 2407.924(66)
c” 1685.87 1650.00 1700.00 1684.810(71)
Vo 14326.49 14.000.00 15000.00 14322.24(10)
AA —334.60 —400.00 —300.00 —332.77(290)
AB 3.33 —5.00 5.00 4.02(120)
AC —29.13 —50.00 0.00 —28.77(100)
['°O][7-D]Phenol

A" 5604.84 5550.00 5650.00 5608.222(90)
B” 2528.93 2500.00 2550.00 2527.965(57)
c” 1743.30 1700.00 1 800.00 1742.737(40)
Vo 17032.26 16 000.00 18000.00 17031.00(10)
AA —331.09 —400.00 —300.00 —332.56(160)
AB 3.18 —5.00 5.00 2.55(90)
AC —31.87 —50.00 0.00 —31.51(70)
Cyy 4.496 — — 2.580

Note: All values are given in MHz except C fg, which is dimensionless.
Aw/Ap, =15.

Table 8. Fit of the inertial parameters of ['*O][7-D]phenol/['°O][7-D]phenol
where the parameter space is narrowed compared to Table 7.

Parameter  GA fit Lower limit ~ Upper limit  Assigned fit (26)
['*O][7-D]Phenol

A" 5606.22 5595.00 5615.00 5607.181(200)
B” 2407.88 2400.00 2420.00 2407.924(66)
c” 1684.45 1676.00 1696.00 1684.810(71)
Vo 14321.54 14300.00 14340.00  14322.24(10)
AA —332.02 —340.00 —320.00 —332.77(290)
AB 3.83 0.00 5.00 4.02(120)
AC —28.53 —50.00 —20.00 —28.77(100)
[*O][7-D]Phenol

A" 5608.53 5595.00 5615.00 5608.222(90)
B” 2528.02 2520.00 2540.00 2527.965(57)
c” 1742.62 1735.00 1755.00 1742.737(40)
Vo 17033.63 17.000.00 17050.00  17031.00(10)
AA —332.81 —340.00 —320.00 —332.56(160)
AB 2.54 0.00 5.00 2.55(90)
AC —31.41 —50.00 —20.00 —31.51(70)
Cyy 2.342 — — 2.580

Note: All values are given in MHz except C fg, which is dimensionless.
Aw/Ap, =4.

815

rovibronic transitions. This evaluation is performed in less than
2 h, without any prior knowledge of the molecular parameters.

4.4.2. [3-D][7-D]Phenol and [5-D][7-D]phenol

Another example of overlapping electronic origins of dif-
ferent isotopomers of phenol is the pair [3-D][7-D]phenol and
[5-D][7-D]phenol. Here, we have to assign simultaneously two

bands with different Lorentzian widths in the Voigt profiles. In
a recent publication (26), the line widths of both isotopomers
were obtained from a fit of some individual rovibronic lines of
each species (26). Since the GA performs a line shape fit of
the complete spectrum, it should yield more accurate values.
In a first step, the inertial parameters were determined using
the GA with Aw/Aj, = 5. For the determination of the line
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Fig. 5. Experimental rovibronic spectrum of ['30][7-D]phenol/['°O][7-D]phenol, along with the simulation using the parameters from an
assigned fit and from a GA fit. Intensities are given in arbitrary units.
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shape parameters, the parameter space for the inertial parame-
ters was narrowed down to 1 MHz and the GA fit was performed
with Aw = 0. The Gaussian width was fixed to the experimen-
tally determined value of 25 MHz. The temperature dependence
of the relative intensity n is described by a two-temperature
model (28):

[15] n(Tlv T27 wT) - eiE/le —+ wTeiE/kTZ

Here, E is the energy of the lower state, wr a weight factor, and
T and T, the two temperatures. The intensity ratio between the
spectra is fit as well. This resulted in improved values for the
Lorentzian component of the line width. The resulting param-
eters are presented in Table 9 and compared with the values of
an assigned fit. While the inertial parameters all agree within
their uncertainties, the line width parameters are quite differ-
ent. From the Lorentzian widths, the S;-state lifetimes could
be determined to be 23.5 ns for [3-D][7-D]phenol and 18.5 ns
for [5-D][7-D]phenol. These values differ considerably from
38.8 ns and 15.6 ns obtained from a line shape fit to individual
transitions in the spectrum. We attribute this difference to the
limited number of single rovibronic transitions that could be
used in the analysis of the line shapes, given in ref. 26.

As discussed before, the sparse stick spectrum array cannot
be used for a fit of a line shape parameter. Instead, the sum
in eq. [3] runs over all 80700 data points, compared to just
745 lines with an intensity of more than 0.001 in the stick spec-
trum. This of course slows down the calculation of the fitness

function considerably. A fit using the sparse array was finished
in only 4.5 min, while the calculation with all data points needed
12 min.

4.4.3. Benzonitrile—>’Ne and benzonitrile-*>Ne

In all the cases discussed so far, the relative intensity of the
two spectra is approximately 1:1. The situation is much more
complicated if both isotopomers have very different abundances.

We performed a fit of the rovibronic spectrum of the iso-
topomeric pair benzonitrile—2’Ne/benzonitrile—**Ne in the nat-
ural abundance of 2°Ne/?2Ne (91:9). In this case, the GA has the
much more difficult task of fitting quite a weak spectrum in the
presence of a strong spectrum. The situation is further compli-
cated by the fact that some of the lines present in the spectrum
are due to benzonitrile monomer lines (the electronic origin of
the monomer is shifted by about 4.3 cm™~! to higher frequency).
Although the monomer origin has already been assigned (29),
these monomer lines cannot be predicted with sufficient accu-
racy because they belong to very high J states.

The rovibronic spectrum of benzonitrile is of pure b-type. The
neon atom is located above the aromatic ring, shifted slightly
towards the cyano group. This structure gives rise to an axis
switching. As a consequence, the transition moment in the clus-
ter is oriented nearly along the inertial c-axis. For this molecular
structure, an ac-hybrid is expected with strong c-type lines and
much weaker a-type lines.

The results for the ac-hybrid type were checked against ab-,
bc-, and abc-hybrid fits for consistency. The mean values for
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Table 9. Molecular constants of [3-D][7-D]phenol and [5-D][7-D]phenol from the
GA fit and an assigned fit (26) for comparison.

[3-D][7-D]Phenol

[5-D][7-D]Phenol

Parameter GA Assigned fit (26) GA Assigned fit (26)
A” (MHz) 5337.98(79) 5338.161(166) 5349.82(8) 5349.789(175)
B” (MHz) 2490.28(54) 2490.353(134) 2487.16(5) 2487.484(121)
C” (MHz) 1698.58(31) 1698.567(65) 1697.98(4) 1698.088(76)
AA (MHz) -309.32(8) -309.42 -306.63(5) -306.81

AB (MHz) 1.80(4) 1.69 0.31(5) +0.08

AC (MHz) -31.08(2) -31.03 -31.26(3) -31.13

T\ (K)* 1.08 — 1.08 —

T, (K)* 2.81 — 2.81 —

wr? 0.16 — 0.16 —

Ratio” 0.96 — — —

Al orentz (MHzZ) 8.57 10.2 6.77 4.1

“The assigned fit was performed with a one-temperature model.
bRatio of intensities between the two spectra. No value given from the individual assigned

fits.

Table 10. Results of a GA assignment and values of the inertial parameters of

benzonitrile—*’Ne/benzonitrile—>’Ne.

Parameter  Fit No. 1 Fit No. 2 Fit No. 3 Fit No. 4 Fit No. 5 Average
Benzonitrile—°Ne

A" 1854.88 1854.87 1854.70 1854.79 1854.76 1854.80
B’ 1193.99 1193.80 1194.06 1194.11 1194.02 1193.99
c’ 964.97 964.92 965.02 964.90 964.88 964.94
Vo 30327.45 30328.14 30325.94 30325.97 30328.11 30327.12
AA —2.83 —2.90 —2.78 —2.83 —2.88 —2.84
AB —22.44 —22.41 —22.27 —22.32 —22.48 —22.39
AC —22.44 —22.41 —22.27 —22.32 —22.48 —4.29
Benzonitrile—>*Ne

A" 1778.18 1773.93 1776.74 1778.16 1778.27 1777.06
B” 1178.15 1178.14 1165.85 1178.86 1177.87 1175.77
c’ 928.64 932.10 938.45 932.55 936.22 933.59
Avy —1454.95 —1430.63 —1450.33 —1436.88 —1461.91 —1446.94
AA 25.75 26.28 26.13 24.93 25.40 25.70
AB —16.05 —16.58 —13.43 —15.58 —13.59 —15.05
AC —13.92 —14.35 —15.52 —14.43 —15.37 —14.72
Cre 14.746 14.782 14.823 14.785 14.806 14.946
Note: All values are given in MHz except C fg, which is dimensionles. Aw/Apy,, = 1.5. The five different

fits were obtained with five different starting populations.

the cost functions are 7.95, 29.26, 9.27, and 7.18, respectively.
Therefore, ab-hybrids can be discarded, which is in agreement
with the geometry of the cluster. The bc-hybrid type fits slightly
worse than the ac- type. However, the cost function differs only
slightly because the spectrum is dominated by c-type lines. The
abc-type did not improve the fit considerably. In conclusion,
the initial assumption of the ac-hybrid type based on the ap-
proximate knowledge of the geometry was confirmed. Table 10
gives the molecular parameters obtained from a four-step GA
fit. In the first step, Aw/A;, = 10 was employed. The search
limits for the rotational constants were +100 MHz for both iso-
topomers. The parameter limits were narrowed down to one-
tenth that of the original size, centered around the best fit value

of the first step. While the more abundant species (benzonitrile—
20Ne) presented no difficulties, the fit of the weaker component
spectrum got trapped in a local minimum. This had two reasons:
the intensity of the sub-spectrum of benzonitrile—>*Ne is only
one-tenth that of the stronger component and the additional
monomer lines have comparable intensities to the transitions
of the stronger isotopic species. Thus, the parameter limits for
the weaker sub-spectrum had to be reduced more slowly and
in more steps. First, the parameter limits were reduced by only
a factor of two, while Aw/A;, was reduced to 7.5. In a sub-
sequent step, Aw/Aj, = 5 and limits of +£20 MHz for the
rotational constants were employed. Finally, the molecular con-
stants given in Table 10 were obtained for Aw/Aj, = 1.5.
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Fig. 6. Upper trace: experimental spectrum of benzonitrile—
20Ne/benzonitrile-*’Ne. Lower trace: simulation using the best
parameters from Table 10. Intensities are given in arbitrary units.

Experimental spectrum of
benzonitrile-"Ne/*Ne

ey 22
v, of Benzonitrile- Ne

GA fit of
benzonitrile>"Ne/Ne
0 10000 20000 30000 40000

Rel. frequency (MHz)

In this case, the fit required some “fine tuning”, which had to
be done manually. Nevertheless, the results of the fit of the rovi-
bronic spectrum of benzonitrile—>"Ne/benzonitrile->*Ne (Fig.
6) show that even very congested spectra, with one spectral
component much weaker than the other, can be assigned using
the GA without any prior knowledge of geometry or molecular
parameters.

5. Summary

In this paper we have shown that the GA is capable of treating
a wide range of different spectra with complexity ranging from
highly overlapping transitions to coinciding spectra of different
isotopomers. Even if only a partial spectrum is available, the
method is still successful. The GA succeeds in assigning the
spectra and determines the molecular parameters without any
prior knowledge of their values.

If the spectrum under study originates from a single vibronic
transition, convergence could be reached in a one-step fit with
a typical value for Aw /A, of 10. A great enhancement is ob-
tained in the accuracy of the line shape and intensity parameters.
While the assigned fit always uses the information from a few
selected single rovibronic lines, the GA utilizes all transitions

Can. J. Chem. Vol. 82, 2004

in the spectrum to adapt these parameters. In particular, the
Lorentzian width (lifetime), the temperature, and the orienta-
tion of the transition dipole moment in the molecule or in the
molecular cluster are determined more accurately from GA fits.

In cases in which the spectrum is composed of two sub-
spectra, a more advanced strategy has to be followed. A pre-
liminary fit with a relatively broad weight function was per-
formed and subsequently refined with both smaller weight func-
tion widths and narrowed parameter search space. Using this
technique, very complicated spectra of two overlapping bands
could be fitted using the GA. Even a large difference in intensity
between the overlapping band forms no obstacle.

The success of the GA procedure of automated fitting is based
on the existence of a good model for the prediction of the spec-
tra. This seems to be the only drawback until now. However,
there are many cases for which a good model prediction exists,
in particular in absorption, cavity ringdown, and laser-induced
fluorescence spectra. We even expect that in the case of small
and (or) local perturbations, the main spectral features that con-
form to the model can be extracted and hence the perturbations
are isolated.

The examples discussed demonstrate the extreme power of
the GA in automated fitting and assigning of very complex
spectra, spectra that can hardly be assigned and analyzed with
conventional methods. It has been shown that the evaluation
of the fitness function can be made to a minor contribution in
the computing time if the particular properties of F, are fully
exploited. The computing power of modern PCs is more than
adequate to perform the job in an acceptable time. This new
technique opens the road to the analysis of the complex spectra
of biomolecules and their building blocks.
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Appendix A.

In this appendix we show that the real or complex matrix
W with matrix elements W;; = w(r; — r;) is positive definite
if w(r) can be written as the inverse Fourier transform of a
positive function w(¢). Let

00 .
d')(t)eZHItht

A1l w(r) =/

then >

[A2] xTWx =) x/Wix,
i

o0
= le*/ w(t) exp [Zni(r,- —rj)t] dr x;
ij -
o
-/
Hence, if W(r) > 0 then xTWx > 0 for any vector x and so

W is positive definite. If w(¢) is zero for certain values of 7, the
integral is still positive. Note: one should read in eq. [4] r; = i.

2
w(t) dt

in exp [—2mir;t]
i
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