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Performance optimization of an external
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We study the factors that ultimately limit the performance of an external enhancement resonator for optical
second-harmonic generation (SHG). To describe the resonant SHG process we introduce a theoretical model
that accounts for the intensity-dependent cavity loss that is due to harmonic generation and that also includes
a realistic assumption about the shape and the frequency width of the laser mode. With the help of this model
we optimized the performance of a doubling cavity based on a lithium triborate (LBO) crystal. This cavity was
used for frequency doubling the output of a single-frequency titanium-doped sapphire laser at 850 nm. We
were able to push the total second-harmonic conversion efficiency to 53% (a 1.54-W pump resulted in 820 mW
of second-harmonic light), which to our knowledge is the best result ever reported for a LBO-based doubling
cavity. © 2002 Optical Society of America
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1. INTRODUCTION
Optical second-harmonic generation (SHG) is a technique
of high technological relevance because it provides the
means for extending laser radiation to shorter wave-
lengths of the optical spectrum. The main objective is to
convert as large a fraction of the power at the fundamen-
tal frequency to that at the second harmonic. Since the
first experimental demonstration of SHG by Franken
et al.,1 considerable progress in understanding the factors
that lead to high conversion efficiencies has been made.
In particular, it has been shown that the use of an optical
resonator for fundamental or harmonic light or both re-
sults in a considerably more efficient SHG process. This
strategy was proposed in the pioneering work of Arm-
strong et al.2 and was investigated more thoroughly by
Ashkin et al.3

SHG in an external resonator for the fundamental
light—the so-called doubling cavity—is usually chosen
when no laser source is available at the desired wave-
length but there is a laser at the double wavelength. An-
other motivation for this choice is the fact that integration
of a doubling cavity into a laser setup helps to make the
system all-solid-state, with obvious advantages related to
maintainance and compactness. In general, SHG in an
external resonator is preferred there when any distur-
bance to the laser action as a result of placing a nonlinear,
optically active crystal into the laser cavity (that also con-
tains high intensities) must be prevented. We note that
the feasibility requirement for efficient frequency dou-
bling in an external resonator is a laser source with a
single-frequency output. This implies that a doubling
cavity is useful in applications such as high-resolution la-
ser spectroscopy and atom optics. The concern is to se-
lect the best cavity configuration and to obtain the high-
est possible conversion efficiency with the lowest possible
noise in the generated power.
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A number of reports of frequency doubling in an exter-
nal resonator appeared in the literature during the past
decade (see, e.g., Refs. 4–8). Those reports have been
motivated mostly by the need to extend the wavelength
range of a single-frequency, cw titanium-doped sapphire
(Ti:sapphire) laser. To this end, either a single doubling
stage4–6 or even two successive resonant cavities7,8 were
employed. Previous studies especially emphasized selec-
tion criteria for the nonlinear crystal and also for cavity
geometry to maximize the Boyd–Kleinman focusing
parameter.9 The argument of those reports was based on
the theory of an empty Fabry–Perot resonator in the
steady-state regime. Within this framework the cavity
loss that is due to depletion of the fundamental to second-
harmonic (SH) radiation is accounted for as being due to a
loss coefficient that does not change during the buildup of
the intracavity field and so is independent of time. Al-
though this procedure imitates the cavity performance at
a given power, it leads to inconsistent results when one is
modeling either the dependence of the cavity reflectivity
and the SH conversion efficiency on the pump power or
the transient behavior of these quantities.

In this paper we present an extensive theoretical and
experimental study of SHG in an external enhancement
resonator. We emphasize the physics of an optical reso-
nator with a SHG crystal inside it. To describe the reso-
nant SHG process we introduce a theoretical model based
on a plane-wave approximation. It accounts for the
intensity-dependent cavity loss that is due to harmonic
generation and also includes a realistic assumption about
the shape and the frequency width of the laser mode. We
demonstrate that the behavior of a doubling cavity is cor-
rectly described only when both of these essential fea-
tures are accounted for. To this end we compare the
model to measurements with a lithium triborate (LBO-)
based doubling cavity for SHG of a cw, single-frequency
2002 Optical Society of America
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Ti:sapphire laser at 850 nm. Excellent agreement be-
tween the model and the experiment is obtained. We
show that only simultaneous measurements of both the
power reflected from the doubling cavity and the gener-
ated power at the SH wavelength as functions of the inci-
dent power provide a key to the quantities that crucially
influence the cavity performance. We optimized the total
SH conversion efficiency at a 53% level (a 1.54-W pump
resulted in 820 mW of SH light) with a projected effi-
ciency of more than 70% at a laser power higher than that
which is now available to us. It is worth remarking that
the highest total conversion efficiency published so far is
40%.8

2. MODELING
An optical resonator is a device that allows light with only
a distinct set of well-defined frequencies, or modes, to os-
cillate. A mode inside a resonator is supported because
of constructive interference; it is in phase with itself after
successive round trips. When an appropriate resonator
configuration (mirrors, geometry, crystal, etc.) is chosen,
the electric field amplitude of an optical wave can be con-
siderably enhanced inside that resonator. It is this en-
hanced field amplitude that results in more-efficient SHG
in a doubling cavity that resonates the fundamental light.

Our aim is to predict the enhancement factor for a
given cavity layout and to calculate both the reflected fun-
damental and the generated SH power. In what follows,
we assume that the optical fields are plane waves. In
this approximation the longitudinal modes supported by
the cavity are explicitly independent of the actual geom-
etry (which dictates the transverse modes). For con-
creteness, however, we consider a four-mirror ring resona-
tor with a nonlinear crystal for SHG inside it, as depicted
schematically in Fig. 1. Mirror M1 with reflectivity R1
(transmissivity T1 5 1 2 R1) serves as the input
coupler.10 Intensity-independent losses that are not due
to M1 are expressed here as reflectivity R0 . We note
that R0 includes losses associated with other cavity mir-
rors, with the crystal (excluding SHG) and, eventually,
with some intracavity elements such as dust particles.
Also, R0 implicitly takes into account the geometry of the
cavity (including possible misalignment).

To simplify the discussion of the intensity-dependent
loss that is due to SHG from the crystal, we first assume
a laser with a truly single-frequency output (infinitely
sharp laser line). In this case the SH intensity ISH(n)

Fig. 1. Four-mirror ring cavity for SHG: M1, input coupler;
M2–M4, cavity mirrors; C, nonlinear crystal.
generated in the nth round trip of the fundamental wave
in the cavity is quadratic in intracavity intensity Ic(n):

ISH~n ! 5 aIc
2~n !. (1)

Here a is the effective SH coefficient that accounts for all
the details of the SHG process (the second-order suscep-
tibility of the crystal, the crystal length, the profile of the
transverse cavity mode, the walk-off angle of the funda-
mental and SH beams, phase matching, etc.). We men-
tion that the simple formulation of Eq. (1) in terms of a
single parameter a makes our treatment of SHG inside a
resonator applicable to any cavity configuration. It now
follows that the remaining intracavity intensity after the
beam passes through the crystal is reduced to
TSH(n)Ic(n), where TSH(n) denotes the intensity-
dependent transmissivity of the crystal for the fundamen-
tal beam in the nth round-trip. It is given by

TSH~n ! 5 1 2 aIc~n !. (2)

One must be aware of the fact that Eqs. (1) and (2) are
an idealization. There might be deviations from these re-
lations, especially in the case of high intracavity intensi-
ties. For example, the central part of the fundamental
beam is depleted at a higher rate than its tails, and the
transverse eigenmode of the cavity might change with
time. Also, higher-order nonlinearities (which are due
to, e.g., thermal and photorefractive processes) might in-
fluence the result. In these cases, Eqs. (1) and (2) would
need to be corrected. In our experiment, however, we did
not encounter any of these problems.

The intracavity field in the nth round trip Ec(n) at the
position of mirror M1 is given by11

Ec~n ! 5 iAT1Ei 1 AR~n 2 1 ! exp~2if !Ec~n 2 1 !,
(3)

where Ei is the fundamental field that is incident onto the
cavity and f is the phase acquired by the intracavity field
in one round trip. Note that f 5 2pj, where j is an in-
teger, whenever the cavity is resonant with the incident
field. The overall intensity loss in the nth round trip is
1 2 R(n), where R(n) reads as

R~n ! 5 R0TSH~n !R1 . (4)

In what follows, R(n) is referred to as the overall intrac-
avity reflectivity. The first term on the right-hand side of
Eq. (3) represents the gain that is due to in-coupling and
includes a phase shift of p/2 acquired in transmission
through M1. The second term is the intracavity field in
the previous round trip Ec(n 2 1), corrected for the over-
all loss and phase accumulation in one round trip.

The fundamental reflected field Er(n) is derived by use
of Ec(n). Intracavity field Ec(n) is first traced across the
whole cavity and then transmitted through M1. After
transmission, it recombines with the directly reflected
beam. We therefore write

Er~n ! 5 2AR1Ei 2 i@T1R~n !/R1#1/2 exp~2if !Ec~n !.
(5)

Optical intensities Ic(n) and Ir(n) associated with fields
Ec(n) and Er(n), respectively, are given by

Ic,r~n ! 5 1/2e0cuEc,r~n !u2 (6)
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where e0 is the permittivity of free space and c is the in
vacuo speed of light.

Now the performance of a doubling cavity pumped with
an infinitely sharp laser line can be predicted by solution
of Eqs. (1)–(6), provided that a, R0 , and R1 are known.
Because intracavity field Ec(n) is related to R(n 2 1), it
is instructive to distinguish the two cases of negligible
and significant contributions of SHG to the total cavity
loss. In the former case the overall intracavity reflectiv-
ity, R(n) . R1R0 [ r, is constant, and the steady-state
intensities Ic 5 Ic(n → `) and Ir 5 Ir(n → `) are re-
duced to the familiar form

Ic 5 T1

1

1 1 r 2 2Ar cos~f !
Ii , (7)

Ir 5 FR1 1 T1

T1R0 1 2r 2 2Ar cos~f !

1 1 r 2 2Ar cos~f !
G Ii , (8)

respectively. Here Ii is the incident fundamental inten-
sity. From Eqs. (7) and (8) we can see that both reflec-
tivity r 5 Ir /Ii and enhancement factor b 5 Ic /Ii are in-
dependent of Ii . For a resonant cavity @cos(f ) 5 0#, the
closer the value of R1 is chosen to that of R0 , the larger is
b. At R1 5 R0 the loss-matching condition r 5 0 is met
and b is maximized. Consequently, the highest conver-
sion efficiency h 5 ISH /Ii is expected for a loss-matched
cavity. Moreover, because the maximum value of b in-
creases with increasing R0 , the intensity-independent
loss should be minimized to optimize the cavity perfor-
mance. Doing so, however, would invalidate the assump-
tion of negligible contribution of SHG to the total loss.
Therefore, only a model that takes into account a signifi-
cant contribution of SHG to the total loss correctly de-
scribes the performance of an optimized cavity. Overall
intracavity reflectivity R(n) then depends on intracavity
intensity Ic(n), and Eq. (3) has to be evaluated numeri-
cally. Reflected field Er as well as intensities Ic and Ir
are then calculated from Eqs. (5) and (6), respectively.

To illustrate the influence of the intensity-dependent
loss on the performance of a doubling cavity, we show in
Figs. 2(a), 2(b), and 2(c), respectively, the calculated de-
pendencies of enhancement factor b, reflectivity r, and SH
conversion efficiency h on pump power. We set the calcu-
lation parameters to the following (realistic) values: R0
5 99.8%, a 5 2.8 3 1025 W21, and R1 5 95.5% (solid

curves), 99.3% (dashed curves), and 99.8% (dotted
curves). The first two values chosen for R1 represent
R1 , R0 ; the third choice corresponds to R1 5 R0 . We
see that b, r, and h strongly depend on incident power Pi .
Enhancement factor b monotonically decreases as Pi in-
creases because the intracavity loss increases. Only the
slope of this decrease gets steeper for larger R1 . The SH
conversion efficiency h is related to a, b, and Ii by

h 5 ab2Ii . (9)

It follows that h first increases with increasing Ii ,
reaches a maximum there where ]b/]Ii 5 2b/2Ii , and
thereafter decreases. The position of this maximum
shifts to higher pump powers for smaller R1 . Because h
is not a linear function of Pi , the generated SH power
PSH , although it is quadratic in the intracavity power, is
not quadratic in Pi . Also, the maximum value of h is not
necessarily reached at the Pi that fulfills the loss-
matching condition (see the dotted and dashed curves in
Fig. 2). The behavior of reflectivity r depends on the re-
lation between R1 and R0 . For R1 > R0 , r increases
with increasing Pi . For R1 , R0 , r is no longer a mono-
tonic function of Pi ; it first decreases to zero and then in-
creases as Pi rises.

The above discussion implies that the theory of an
empty Fabry–Perot resonator is inadequate to describe
completely the performance of a doubling cavity. Even
for small pump powers, for which the losses that are due
to SHG are small and the increase of SH conversion effi-
ciency h is approximately linear in Pi , the proper theory
yields significant variations of enhancement factor b and
reflectivity r (see Fig. 2). Consequently, only simulta-
neous measurements of the power dependence of r and h
permit us to characterize a doubling cavity. In particu-
lar, such measurements are required for determining both
R0 and a, which are important quantities for the strategy
to select the most appropriate input coupler. While the
dependence of r on Pi reveals the relation between R1 and
R0 , the accompanying measurement of h fixes the value
of a. It is interesting to note here that the theory of an
empty Fabry–Perot resonator is able to imitate the cavity
performance at one pump power. From the measured re-
flectivity an apparent loss, i.e., R0 , can be inferred by
means of Eq. (8) and used to determine the corresponding
enhancement factor from Eq. (7). This enhancement fac-
tor and the measured SH power then lead to a value for a.
For another pump power, however, the values of R0 and a
will be different. Hence this treatment leads to inconsis-
tent results.

Fig. 2. Calculated (a) steady-state enhancement factor, (b)
reflectivity, and (c) SH conversion efficiency as functions
of fundamental power. Calculation parameters: R0 5 99.8%,
a 5 2.8 3 1025 W21; R1 5 95.5%, 99.3%, 99.8%.
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There is one more thing that we have to include in the
model to obtain quantitative agreement with the experi-
ment. The above argument, although it is valid on a
qualitative level, assumes a truly single-frequency excita-
tion of the cavity. A realistic laser, however, always pro-
duces an output that exhibits a distribution of frequencies
with a finite width (including both the intrinsic width and
the frequency jitter). Therefore, in what follows, we in-
corporate the frequency distribution of the incident laser
field represented at a given fundamental frequency v by
Ei(v). Similarly, the intracavity and reflected fields are
denoted, respectively, Ec(v) and Er(v). To calculate
these fields we make use of Eqs. (3) and (5) with the
added dimension that also waves with frequencies de-
tuned from the true resonance are incident into and exist
in the cavity. The two equations through which the SHG
process enters our model, Eqs. (1) and (2), should be
slightly reformulated to account for mutual interaction
between fields at different frequencies. First, the inten-
sity at harmonic frequency V is given by

ISH~V, n ! 5 1/2e0caU E
2`

1`

Ec~V 2 v, n !Ec~v, n !dvU2

.

(10)

We still refer to this nonlinear process as SHG, even
though Eq. (10) describes sum-frequency generation.
However, we assume that the typical width of the fre-
quency distribution of incident field dv is many orders of
magnitude smaller than central frequency v0 (usually
dv/v0 ' 1029). Second, the crystal transmissivity
TSH(n) that accounts for the intensity-dependent loss is
still given by Eq. (2), though for completeness we write

TSH~n ! 5 1 2 1/2e0ca E
2`

1`

uEc~v, n !u2dv. (11)

Because the coupling strength between two fields at dif-
ferent frequencies is proportional to the product of the as-
sociated optical intensities, TSH(n) depends only on the
integrated intracavity intensity. It is thus independent
of V and, consequently, of f.

The consequence of including the laser mode profile in
the model is crucial for a quantitative assessment of the
cavity performance. The shape of this profile and also its
width dv strikingly influence cavity reflectivity r, en-
hancement factor b, and SH conversion efficiency h. In
general, the broader the laser spectrum is, the higher is r
and the lower are b and h. This is a consequence of the
fact that the cavity mode exhibits a finite full width at
half-maximum (FWHM) dvc and acts therefore as a band-
pass filter. Whereas for dv ! dvc the assumption of
single-frequency excitation of the cavity is satisfactory,
for dv @ dvc the cavity prevents almost the whole laser
spectrum from entering the cavity.

A particular doubling cavity is optimized when the
proper choice of input coupler reflectivity R1 is made.
The main goal here is therefore to ascertain the values of
R0 and a and to determine the profile of the laser mode
(including dv). Only when all these parameters are
known can we select R1 by employing the model pre-
sented above.
3. SETUP
In Fig. 3 we show a schematic of our experimental setup.
The fundamental beam at 850 nm is produced from a
single-frequency Ti:sapphire laser (pumped with a 10-W,
532-nm, diode-pumped frequency-doubled Nd:YVO4 la-
ser) with its mode referenced to a thermally isolated cav-
ity. A fundamental power of as much as 1.7 W is avail-
able from this system. The doubling cavity is a four-
mirror ring resonator. Its geometry was proposed by use
of a ray tracing algorithm and optimized during the align-
ment procedure. The SH radiation is generated in the
crystal in single pass. We use a LBO crystal with dimen-
sions 4 mm 3 4 mm 3 10 mm that is Brewster cut and
phase matched for 850 nm. Type I critical phase match-
ing is employed because at our wavelength it is the most
efficient type. The phase-matching angles are u 5 90°
and w 5 26.9°. The infrared light is coupled into the
doubling cavity through plane mirror M1 with reflectivity
R1 . Five mirrors, with R1 5 95.5%, 97.3%, 98.5%,
98.7%, 99.7% (for 850 nm) were used in our experiments.
The next mirror, M2, is also plane and is high-reflection
coated for 850 nm. M2 is mounted upon a piezoelectric
transducer (PZT) that provides at maximum a displace-
ment of 10 mm. The last two cavity mirrors, M3 and M4,
are both concave with a radius of curvature of 10 cm.
They are also high-reflection coated for 850 nm. To en-
sure mechanical stability all mirrors and also the crystal
are connected to a monolithic cavity block made from
high-strength aluminum. M3 and M4 are mounted upon
differential screws, and their alignment can thus be
tweaked with high precision. The crystal is placed on a
stage that allows for two angular adjustments and has all
three translational degrees of freedom. Two lenses, L1
and L2, are used for mode matching of the fundamental
beam into the cavity. They are both antireflection coated
for 850 nm. The focal lengths of L1 and L2 are 25 and
10 cm, respectively. The separation between these lenses
can be adjusted; L1 is mounted upon a translator.

Fig. 3. Schematic design of the doubling cavity: L1, L2, mode-
matching lenses; M, folding mirror; HWP, half-wave plate; M1,
input coupler; M2, PZT-driven mirror; M3, M4, concave mirrors;
C, LBO crystal; GP, glass plate; M5, folding mirror; F, neutral-
density filter (10%); QWP, quarter-wave plate; PBS, polarization
beam splitter; D1, D2, photodiodes. Data plot, measured
Hänsch–Couillaud signal as a function of the detuning of a 1-W,
850-nm fundamental beam from the cavity resonance.
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To lock the cavity length onto the laser frequency we
implement the Hänsch–Couillaud stabilization scheme.12

To this end, a half-wave plate for the fundamental beam
is mounted in front of M1. Only p polarization is sup-
ported by the cavity because of the Brewster-cut crystal.
A small nonresonant s component is obtained by rotation
of the half-wave plate slightly. This s component serves
as a reference for the stabilization unit. The incident
beam is reflected from M1 onto an aluminum-coated mir-
ror and then onto a glass plate with a matte back face.
Thereafter it passes through a neutral-density filter with
a 10% transmissivity to reduce the optical power to a rea-
sonably low level. The optics for getting a dispersion sig-
nal around the cavity resonance consists of a quarter-
wave plate and a polarization beam splitter. The
quarter-wave plate’s axis is at an angle of 45° with re-
spect to the polarization of the fundamental laser beam
reflected at resonance. The difference between the sig-
nals detected on the two photodiodes is a measure of the
phase change of the p-polarized fundamental field on re-
flection from the cavity. In Fig. 3 a dispersion signal as
measured for a 1-W, 850-nm pump and R1 5 95.5% is
shown. After the cavity was locked to this signal, the SH
power fluctuations were below 60.75%. Such power sta-
bility was achieved for all available input couples. It
should be noted, however, that the higher the value of R1 ,
the narrower the dispersion feature and the more suscep-
tible the cavity is to instabilities and the electronics to the
gain settings.

For spectroscopic applications it is interesting to dis-
cuss the range of tunability of the SH frequency. The to-
tal (optical) length of a single-cavity round trip was mea-
sured to be 632 mm. This implies that the free spectral
range (FSR) is .474 MHz. To change the resonance fre-
quency by dn requires that cavity length L be changed by
dL 5 2ldn/FSR, where l is the fundamental wave-
length. Now, because PZT-driven mirror M2 can move at
maximum 65 mm, the cavity can be scanned continuously
with the laser for no more than 62.8 GHz at 850 nm.
This scan range corresponds to a change in the SH fre-
quency of 65.6 GHz. In practice, we could accomplish a
change of only 63 GHz at 425 nm.13 For larger wave-
length ranges, discontinuous frequency steps are re-
quired. Moreover, for a step of more than 0.2 nm at the
fundamental wavelength, the cavity alignment (especially
the orientation of the LBO crystal) must be adjusted. We
measured a drastic decay of the SH power below 840 and
above 880 nm. At these two wavelengths, however, we
still could optimize the SH power at, respectively, 30%
and 50% of its best measured value at 850 nm.14

The direct SH beam exiting the doubling cavity
through mirror M4 contains 77% of the total generated
SH power. The main loss is caused by the output face of
the LBO crystal, which is Brewster cut for 850 nm. For
the s-polarized 425-nm beam the reflectivity of the crystal
is 16.6%. This reflected light is also coupled out of the
cavity and can be used in an experiment. The last source
of loss is mirror M4, with a transmissivity at 425 nm of
92.7%. We must also note that the direct SH beam is as-
tigmatic because of the phase-matching process in LBO.
The measured beam divergence was 12 mrad in the hori-
zontal and 3.5 mrad in the vertical directions. In both of
these directions the intensity profile is to a good approxi-
mation described by a Gaussian function.

4. EXPERIMENT AND ANALYSIS
To optimize the doubling cavity by selecting the most
suitable input coupler we must first ascertain the
intensity-independent loss, expressed here as R0 , SH co-
efficient a, and also the profile and frequency width dv
of the laser mode. To get a reliable estimate of a and R0
we used the input coupler with the highest transmissivity
(R1 5 95.5%). For this choice we expected dv to be
considerably smaller than the FWHM of the cavity mode,
dvc , which is certainly larger than 2p 3 3.4 MHz
(this frequency width would be seen for R0 5 100% and
a 5 0). The assumption that dv ! dvc implies that the
laser mode can, to a good approximation, be treated as a
truly single-frequency excitation of the cavity. We then
measured the dependence of reflected fundamental power
Pr and also of the total generated SH power PSH
on incident power Pi at 850 nm.15 These dependencies
are shown by squares in Figs. 4(a) and 4(b), respectively.
We could reproduce both of them simultaneously with our
model only for R0 . 99.8(1)% and a . 2.7(1)
3 1025 W21. Another way to identify the value of a
relies on measurements of PSH as a function of intra-
cavity fundamental power Pc . To this end we deter-
mined the transmissivity of mirror M4 for 850 nm to be
T4 . 0.0028% and measured transmitted fundamental
power Pt (5T4Pc). The dependence of PSH on Pt
was quadratic, and a least-squares fit to it revealed
a 5 2.8(1) 3 1025 W21, in excellent agreement with the
value obtained above.

Using the estimated values of R0 and a, we could cal-
culate the cavity mode for the input coupler with the
highest reflectivity, R1 5 99.7%. The FWHM width of
this mode, dvc , was 2p 3 830 kHz at a 1-W pump (the
cavity mode gets broader at higher incident power be-
cause the overall loss increases as a result of SHG). Un-
fortunately, we could not make use of this narrow cavity
mode to determine the laser mode profile while scanning
the cavity across the free spectral range. At low scan-
ning frequencies (,5 kHz) acoustic noise was coupled to

Fig. 4. Steady-state dependence of (a) the reflected fundamental
power and (b) the total SH power on the incident pump power for
R1 5 95.5%, 97.3%, 98.5%, 98.7%, and 99.7%. Solid curves,
modeled dependencies.
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the cavity, whereas at high frequencies (.5 kHz) dynamic
effects started to play a role. This result becomes obvi-
ous when one recognizes that at a 5-kHz frequency the
cavity mode is scanned through in only ;350 ns, whereas
it takes ;1 ms to reach the steady state. Therefore we
made use of the static measurements with this mirror
(shown in Fig. 4 as diamonds) and guessed the laser mode
profile. The best agreement with the experiment was
obtained when we assumed a parabolic distribution of
the incident laser intensity Ii(v) around the central fre-
quency v0 :

Ii~v! } 1 2 S v 2 v0

dv/A2
D 2

, (12)

with the FWHM frequency width dv/2p . 660 kHz and
uv 2 v0u < dv/A2 [and otherwise Ii(v) 5 0]. We note
that such a profile is a reasonable assumption for a
single-mode laser.

Now, having the estimates for all crucial parameters,
our model predicted the best performance for the input
coupler with R1 5 98.5%. The experimental results for
this input coupler are shown in Fig. 4 as upward-pointing
triangles. They clearly confirm this prediction and dem-
onstrate the strength of the analysis presented. For com-
pleteness and to improve the values of R0 , a, and dv we
measured the power dependencies for two additional in-
put couplers with R1 5 97.3% and 98.7%. These are also
shown in Fig. 4. All acquired data sets were then fitted
simultaneously to the model by a least-squares deviation
algorithm. The free-fit parameters were R0 , a, and dv,
whose final values are R0 5 99.8(1)%, a 5 2.80(5)
3 1025 W21, and dv/2p 5 630(50) kHz. The curves in
Fig. 4 present the modeled dependencies. These are in
excellent agreement with the experiment. We must men-
tion that only with the laser mode profile from Eq. (12)
were we able to bring the model into agreement with the
data, although a number of other distributions were also
tried. For example, Lorentzian and Gaussian line
shapes, which correspond to the same measured SH con-
version efficiency, led to considerably higher cavity reflec-
tivity than observed. The narrower the cavity mode, the
more pronounced this discrepancy. This result implies
that a doubling cavity can be employed as a device for in-
direct characterization of the spectrum of a single-mode
laser.

The accuracy with which R0 and dv were determined
demonstrates that the cavity is extremely sensitive to any
changes in these quantities and, therefore, also to align-
ment and mode matching. All data presented in Fig. 4
were obtained in a relatively short span of time (a few
hours) to ensure identical experimental conditions. In
general, the conversion efficiency obtained from the cavity
fluctuates from day to day on a level of ;10%. Whereas
the results from Fig. 4 can routinely be attained, they do
not represent the best performance that we achieved.
The highest SH power and conversion efficiency obtained
with the optimal input coupler (R1 5 98.5%) are pre-
sented in Figs. 5(a) and 5(b), respectively. At maximum,
53(3)% of the fundamental power was converted to
SH power: A 1.54(4)-W pump resulted in 820 6 20 mW
of blue light, which implies an intracavity power
Pc . 170 W and consequently an enhancement factor
b . 110. The data from Fig. 5 are well described with
our model, assuming that R0 5 99.9%, a 5 2.8
3 1025 W21, and dv/2p . 450 kHz. We attribute the
observed changes in R0 and dv to the behavior of the
Ti:sapphire laser that turned out to be the main source of
long-term fluctuations. The sensitivity of the cavity to
these fluctuations is less pronounced as the transmissiv-
ity of the input coupler increases. Therefore for a given
application a compromise must be found between sacrific-
ing the SH power and maintaining its long-term stability.
It is also interesting to compare the data from Fig. 5 with
the theoretical results obtained with the assumption that
dv 5 0 [the dashed curve in Fig. 5(b)]. This comparison
shows that the conversion efficiency could be optimized
even at a considerably higher level, provided that a laser
that exhibits a narrower mode were used.

Heretofore we have demonstrated the ability of our
model to describe a cavity in the steady-state regime.
Now we briefly discuss the transient behavior of the cav-
ity. Such a study was carried out earlier by, for example,
Lawrence et al.,11 who investigated the dynamic response
of an empty optical resonator. In their experiment, ei-
ther the laser frequency or the cavity mode was scanned.
The transient effects were detected on the measured spec-
trum of the transmitted and reflected light and also on
the Pound–Drewer–Hall signal.14 In contrast, we kept
the cavity resonant with the laser and used an acousto-
optic modulator with a 50-ns rise time to turn the inci-
dent beam OFF and ON. The ON period was adjusted to 3
ms, and the switching frequency to 250 kHz. The cavity
regulation electronics does not respond to this frequency
and thus detects only the mean Hänsch–Couillaud signal.
Although the shape of this signal was influenced by the
transients of the reflected field, we could still balance the
detection scheme to maintain the cavity resonance. The
reflected and the SH powers were each detected with a
photodiode with a 0.5-ns rise time. For illustration, in
Fig. 6 our measurements with three input couplers—R1
5 95.5% (solid curves), 98.5% (dashed curves), and 99.7%
(dotted curves)—are shown for a 1.25-W, 850-nm pump
[for a lower (higher) incident power the dynamics is
slightly slower (faster)]. These data were obtained by av-

Fig. 5. Best achieved performance: (a) SH power and (b) con-
version efficiency as functions of incident fundamental power.
Squares, measured data; solid curves, modeled dependence;
dashed curve, dependence modeled with the assumption that
dv 5 0 and R1 5 99.3% [see also the dashed curve in Fig. 2(c)].
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eraging 32 times with a digital oscilloscope. The calcu-
lated time dependencies, shown in Fig. 6 as lighter
curves, reproduce all the measured transients simulta-
neously for R0 5 99.7(1)%, a 5 2.8(1) 3 1025 W21, and
dv/2p 5 550(60) kHz. These parameters are, within
the errors, identical to those reported above. The excel-
lent agreement between the measured and the modeled
cavity dynamics again demonstrates the strength of our
approach to SHG in an external enhancement resonator.

5. CONCLUSION
We have presented an extensive theoretical and experi-
mental investigation of an external enhancement resona-
tor for second-harmonic generation. We introduced a
theoretical model that takes into account the fact that the
cavity losses increase as a result of an increase of second-
harmonic conversion efficiency as the intracavity inten-
sity builds up. Interestingly, although this argument is
fairly trivial and has amazing consequences, (to the best
of our knowledge) no one has included it in studies of
resonant frequency doubling so far. Only by incorporat-
ing this essential feature can the intriguing behavior of a
doubling cavity correctly be reproduced and predicted.
Furthermore, to obtain a quantitative agreement with the
experiment requires that the true shape of the laser spec-
trum also be considered. We have seen excellent agree-
ment between the proposed model and measurements
with a lithium triborate-based doubling cavity for SHG of
a single-frequency Ti:sapphire laser at 850 nm. This
model accurately reproduces the cavity performance in
both steady-state and transient regimes. The effective
SH coefficient, the intensity-independent loss, and the la-
ser mode profile were identified as the factors that ulti-
mately limit cavity performance. They were all success-
fully extracted from the data and used to determine the

Fig. 6. Comparison of measured and calculated transients of
the cavity for a 1.25-W, 850-nm pump: (a) reflected fundamen-
tal power and (b) SH power. R1 5 95.5%, 98.5%, 99.7%.
Lighter solid curves, modeled time dependencies.
optimum reflectivity of the input coupler. We maximized
the SH conversion efficiency at a 53% level for a 1.54-W
fundamental power and have seen that, in our case, the
most limiting factor of all is the relatively broad laser
line.

The framework presented here provides the means for
pushing the performance of a doubling cavity to its ulti-
mate limits within the technical constraints that one
faces in reality (no laser line is infinitely sharp, no mirror-
coating technique is perfect, etc.). Moreover, it should
also prove useful for analyzing the process of resonant
sum-frequency mixing with single-mode lasers. The ex-
treme sensitivity of the power reflected from the cavity to
changes in the total cavity loss, seen in both static and
transient regimes, indicates that high-quality cavities
locked to a single-mode laser can be used as an alterna-
tive approach to conventional cavity ring-down spectros-
copy.
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14. The Hänsch–Couillaud stabilization method is not suitable
for spectroscopic applications, especially when a broad
wavelength range is required. In carrying out the wave-
length tuning measurements we applied the Pound–
Drewer–Hall stabilization scheme [see R. W. P. Drewer, J.
L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley,
and H. Ward, ‘‘Laser phase and frequency stabilization us-
ing an optical resonator,’’ Appl. Phys. B 31, 97–105 (1983)].
The power stability with both of these two techniques re-
mained the same (at least within the limit that we could de-
tect).

15. Absolute power values are uncertain to 62.5% of the stated
value because of uncertainty in detector calibration.


