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Anomalous transitions in two-level
systems driven by the ac Stark
effect

W. Leo Meerts, Irving Ozier, and Jon T. Hougen

Abstract: An unusual type of nonresonant absorption signal produced by the ac Stark effect
has been observed in a two-level avoided-crossing system. The theory for these anomalous
transitions has been developed. The nonresonant signals have been shown to be caused by the
perturbation by the oscillating field of the dephasing of the two-level system at the avoided
crossing. A series of measurements of these anomalous transitions has been carried out using
the avoided-crossing molecular-beam electric-resonance technique. In addition, different types
of resonant multiphoton transitions have been investigated. Results are reported for theAE-
barrier anticrossing withJ = 1 in CH3SiH3. The experimental findings are in good agreement
with the theory developed.

PACS Nos.: 33.20Bx, 33.80Be, 42.50Hz

Résumé: Nous observons un type inhabituel d’absorption non résonante produite par un effet
Stark ac dans un système à deux niveaux évitant le croisement. Nous développons une théorie
décrivant ces transitions anomales. Nous montrons que les signaux de non-résonance résultent
de la perturbation causée par le décalage du système à deux niveaux lors de l’évitement du
croisement. Nous avons effectué des séries de mesures sur ces transitions anomales en utilisant
la technique de résonance électrique dans un faisceau moléculaire. Nous analysons aussi
différents types de transitions résonantes multiphoniques. Nous présentons des résultats pour
une barrière anticroisementAE avecJ = 1 dans du CH3SiH3. Les résultats expérimentaux sont
en bon accord avec ceux de la théorie développée ici.

[Traduit par la Rédaction]

1. Introduction

In the understanding of the interactions between radiation and matter, the two-level problem [1]
plays a fundamental role. A two-level problem is defined as a system in which two individual states
have interactions only with each other and with external fields. Avoided crossings in symmetric top
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molecules were found to provide an ideal example of an isolated two-level system, and can be used to
study the behaviour of this system in external oscillating fields. In a previous paper [2], an unusual type
of resonant multiphoton transition was reported. Absorption of as many as 40 photons was detected
under moderate conditions. To drive these transitions, the amplitude of the monochromatic oscillating
field was only a factor 40 larger than was needed to optimize the corresponding one-photon transition.
It was found that the linear ac Stark effect was responsible for this effect. In particular, as a result of the
K-degeneracy that exists forK 6= 0 in a symmetric top, the Stark effect produces diagonal terms in the
two-by-two Hamiltonian matrix for the two-level system. These diagonal Stark terms can be transformed
into the more usual off-diagonal position in the matrix, but now associated with an effective oscillating
field which contains a large number of harmonics of the single frequency being applied. Measurements
were taken in a fixed static electric field by sweeping the frequency of the oscillating field.

Two-photon microwave transitions associated with the same mechanism have been observed by Mar-
tinache et al. [3]. In that experiment, the frequency of the oscillating field was approximately 8.6 GHz.
The two-photon transitions were detected by observing one-photon emission signals at 17.3 GHz with
a Fourier transform crossed-cavity spectrometer. The identification of the absorption mechanism was
confirmed by showing that only the transitions withK 6= 0 appeared in the spectrum when the radia-
tion was properly filtered, even though the(K = 0) lines were easily observed when the filtering was
removed. This experiment clearly demonstrated that the multiphoton transitions are not limited to the
avoided-crossing technique or to the radio-frequency region, but are of a much more general nature.

Several studies of multiphoton transitions in a two-level system have been discussed in the literature
in a variety of other fields, including magnetic resonance [4] and multiphoton excitation with intense
laser pulses [5]. Perhaps the most relevant of these related studies is the work on multiphoton microwave
transitions between Rydberg states in potassium [6,7]. These Rydberg studies involve pairs of levels
that undergo an avoided crossing, with at least one of the interacting levels having a linear Stark effect.
Although the system being investigated, the experimental methods, and the theoretical treatment are
all rather different from those in our earlier work [2], the underlying physics is very similar in the two
cases. The theoretical approach used in the current paper will be modelled on that developed in our
earlier investigation of multiphoton transitions in symmetric rotors [2].

During a series of molecular-beam electric-resonance (MBER) studies on avoided crossings [8–11],
another type of anomalous transition was observed. The crossing field for an anticrossing is defined
to be the value of the constant external electric field for which the energy separation between the two
interacting levels is a minimum. At (or near) the crossing field, transitions between the two levels could
be driven with a monochromatic electric field oscillating at a frequency that was arbitrary (within very
broad limits). The fixed-energy separation of the two levels was typically of the order of a few kHz, while
the frequency of the oscillating field was varied typically from 50 to 1000 kHz. The associated signals
are clearly nonresonant. These nonresonant transitions played a very important role in the avoided-
crossing studies [8–11]. Since the strength of these anomalous absorption signals was insensitive to the
frequency of the oscillating field, these signals were extremely useful in making an initial determination
of the crossing field for two levels whose zero-field energy separation was poorly known beforehand.

In the current paper, the theory is developed that is needed to describe these anomalous nonresonant
transitions. It is shown that the absorption arises from the perturbation by the oscillatory field of the
dephasing of the two-level system at the crossing. As was the case with the resonant multiphoton
transitions reported earlier [2], the absorption mechanism for these nonresonant transitions requires
that at least one of the two levels has a linear Stark effect. A series of measurements has been carried out
with the constant field set to the crossing value to within experimental error. Good agreement was found
between the experimental observations and the theoretical predictions. Besides these avoided-crossing
MBER measurements at the crossing, further studies of the resonant multiphoton process have been
carried out, including one in which the frequency of the oscillating field is held fixed and the static
field is varied. In each such study, the dependence of the transition probability on the strength of the
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radio-frequency field is investigated. In each case, it is found that the theoretical predictions are in good
agreement with the experimental data.

2. Theory

2.1. Background

The analysis starts with the basic equations of an anticrossing system of two levelsj = 1 or 2, as
discussed in detail in ref. 8. The levels are tuned to the avoided crossing by the application of a constant
homogeneous external electric fieldξ .2 However, the limitξ → 0 will be considered first. In this limit,
three assumptions are made. First, it is assumed that each of the two levels has a linear dependence of its
energy on the field.3 Second, it is assumed that the dipole-moment operatorµ does not couple the two
states, except possibly through higher order terms, which will be neglected. Third, it is assumed that
the Stark effect is positive for the lower level(j = 1) and negative for the upper level(j = 2). Under
these conditions, asξ is increased from zero, it will eventually reach a value at which the Stark effect
cancels the zero-field energy splitting10, which is here defined so as to be positive. This value ofξ is
the crossing fieldξC (defined above), and the levels will cross at this field if no additional interaction
is present. However, if there exists a nonzero coupling matrix element between the two states, they
will undergo an avoided crossing. This coupling matrix element can arise from a variety of different
mechanisms. For symmetric tops, a number of these mechanisms have been discussed in refs. 8,9,11–13.
The magnitude of the coupling matrix element will here be denoted1

2~ωc. (The sign does not affect
any of the results obtained in the current work.) When~ωc is smaller than the instrumental resolution,
it has not been possible to determine this coupling matrix element by direct frequency measurements.

The specific case studied in the current work4 is theAE-barrier avoided crossing(J = 1,K =
∓1, σ = 0,mJ = ±1, 0 = E1) ←→ (1,±1,∓1,±1, E3) in CH3SiH3 [9]. See, in particular, the
energy level diagram shown in Fig. 2 of ref. 9. In the limitξ → 0, the(0 = E1) state is the lower
level, here labelled(j = 1), while the (0 = E3) state is the upper level, here labelled(j = 2).
The crossing field in this case isξC = 1.719 kV/cm. The diagonal electric dipole matrix element
µjj = µ(J,K,mJ ) = µKmJ/J (J + 1), where the permanent dipole momentµ = 0.734 560(3) D
(1 D = 3.335 64× 10−30 C m) [14]. For this particular anticrossing,µ22 = −µ11 = µ/2.

2.2. Time evolution of a two-level system without an external excitation field

The HamiltonianH̃ for the two-level anticrossing system will initially be investigated in the absence
of an external oscillating field. In this case,H̃ has no explicit time-dependence and can be written as
the sum of two time-independent parts:H0, which describes the zero-field splitting and the linear Stark
effect, andHc, which describes the coupling between the two levels.

H̃ = H0 +Hc (1)

ForH0, the eigenvalues and time-dependent eigenfunctions are writtenE
(0)
j and9j(t), respectively,

2 The results obtained here for the electric field case can be easily converted to the form appropriate to the corresponding
magnetic case.

3 The present analysis can easily be adapted to the case where only one of the two levels has a linear Stark effect.
4 In the specification of the quantum numbers for the avoided crossing, upper signs go with upper, and lower signs with lower.

The system of levels can be thought of as consisting of two independent two-level problems. In fact, when the nuclear spin
quantum numbers are taken into account, there are many more levels involved. It has been shown that these break up into a
series of two-level problems if a small magnetic field is applied; see refs. 8 and 13. In the current work, the data were taken
in the ambient magnetic field, and the break-up into a series of two-level problems is based on empirical evidence, as was the
case in ref. 13.
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with j = 1, 2. The Hamiltonian matrix forH0 can be written

(H0) =
(
E
(0)
1 0

0 E
(0)
2

)
=
( −1

210 − µ11ξ 0
0 +1

210 − µ22ξ

)
(2)

So that the signs of the linear Stark effects lead to an avoided crossing (as noted above), it is required
thatµ11 < 0 andµ22 > 0. As can be seen from Sect. 2.1, theAE-barrier avoided crossing of interest
here meets this requirement. The second-order Stark effect is neglected here. The symbol~ω0 will be
used to represent the energy difference(E

(0)
2 −E(0)1 ).5 Here~ω0 is positive below the crossing, zero at

the crossing(ξ = ξC), and negative above. The time-dependent eigenfunctions ofH0 can be written in
the standard manner in terms of the time-independent spatial eigenfunctionsψj (r)

9j (t) = ψj (r)e−iE
(0)
j t/~

, H0ψj (r) = E(0)j ψj (r) (3)

In the basis{ψ1(r), ψ2(r)}, the matrix forH̃ itself can be written(
H̃
)
=
(
E
(0)
1 0

0 E
(0)
2

)
+
(

0 1
2~ωc

1
2~ωc 0

)
(4)

For H̃ , the eigenvalues are writtenEj , with j = 1, 2. The choice for the labels 1 and 2 is made
such that the energy difference(E2− E1) between the two states is positive below the crossing and
negative above. (This choice is in accordance with that made earlier for(E

(0)
2 − E(0)1 ).) From (4),

|E2− E1| = ~ωres =
√
(E

(0)
2 − E(0)1 )2+ (~ωc)

2, whereωres is the associated resonance frequency.

Far from the avoided crossing,|E2− E1| '
∣∣∣E(0)2 − E(0)1

∣∣∣� ~ωc, and the effect ofHc on the energies

Ej can be neglected. At the crossing field,|E2− E1| takes the value~ωc. Near the avoided crossing,
not only are the energies affected byHc, but, in addition, the time evolution of the eigenfunctions is
affected,evenin the absence of an explicit time-dependence inH̃ . This is caused by the mixing of the
states{ψ1(r), ψ2(r)} by the off-diagonal terms inHc. In effect, the system is prepared withξ far from
ξC in an eigenstate ofH0, which is not an eigenstate of̃H . Then|ξ − ξC| is reduced to zero and, as is
shown below, the system oscillates between the eigenstates ofH0.

The time-dependent solutioñ8(t) of the complete HamiltoniañH can be obtained in the form

8̃(t) = ã1(t)91(t)+ ã2(t)92(t) (5)

By substituting (5) intoH̃ 8̃(t) = i~(∂8̃(t)/∂t), multiplying by9∗j , and integrating over the spatial
variables, the following pair of differential equations are obtained forã1(t) andã2(t):

i~
dã1(t)

dt
= 1

2
~ωcã2(t)e−iω0t , i~

dã2(t)

dt
= 1

2
~ωcã1(t)e+iω0t (6)

Equations (6) can be solved analytically. It will be assumed that all molecules are in statej = 1
before entering the region whereξ is close toξC, and stay in that region for a timet . The initial conditions
then areã1(t = 0) = 1, andã2(t = 0) = 0. With these initial conditions, the solution forã1(t) can be
written

ã1(t) = e−iω0t/2
[
cos

(
1

2
�̃t

)
+ i ω0

�̃
sin

(
1

2
�̃t

)]
, �̃ =

√
ω2

0 + ω2
c (7)

5 It should be noted that the definition ofω0 used in the current paper differs slightly from the one used in ref. 2.
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The probability of finding the molecule in statej = 1 is given by|ã1(t)|2. Consequently, the change
(1Ĩ ) in the number of molecules in statej = 1 after the molecules have been in the region near the
avoided crossing for a timet is |ã1(t)|2− |ã1(0)|2, where

1Ĩ = |ã1(t)|2− 1= −ω
2
c

�̃2
sin2

(
1

2
�̃t

)
(8)

2.3. The effects of a time-dependent resonant field far from the crossing
The effect on the two-level system will now be investigated of a coherent excitation field of the form

V (t) = ε cosωt . Hereε andω are, respectively, the electric field strength and the angular frequency of
the applied radio-frequency field. Approximations will be made that are appropriate to the case where
|ξ − ξC| is large and(ω/ω0) is close to (or equal to) an integer value. These conditions correspond,
respectively, to being far from the crossing and to being near (or on) resonance. The HamiltonianH

describing this system is given by

H = H0 +Hc+ V (t) (9)

In the basis{ψ1(r), ψ2(r)}, the matrix for HamiltonianH can be written

(H) =
(
E
(0)
1 0

0 E
(0)
2

)
+
(

0 1
2~ωc

1
2~ωc 0

)
+
( −µ11ε cosωt 0

0 −µ22ε cosωt

)
(10)

The time-dependent solution8(t) of H can be written as a linear superposition of the two functions
9j(t) (j = 1,2) as in (5), but with new superposition constantsaj (t). By following the procedure used
to derive (6), the following pair of differential equations can be obtained for theaj (t):

i~
da1(t)

dt
= −µ11ε cosωt a1(t)+ 1

2
~ωca2(t)e−iω0t

i~
da2(t)

dt
= +1

2
~ωca1(t)e+iω0t − µ22ε cosωt a2(t)

(11)

The case currently under consideration where the static external fieldξ is far from the crossing value
ξC was treated in our earlier work [2]. It was found that the effect ofV (t) on the diagonal in (10) could
be transformed to the more usual off-diagonal position in the matrix through the introduction of an
effectiveoscillating field, which contains a large number of harmonics of the frequencyω actually being
applied. Thenth harmonic can induce multiphoton transitions when the resonance conditionnω ≈ ω0
is met. In this case, the change (1I ) in the number of molecules in statej = 1 after the molecules have
been in the C-field region for a timet is

1I = |a1(t)|2− 1= − x
2
n

�2
n

sin2
(

1

2
�nt

)
where

�n =
√
(nω − ω0)

2+ x2
n

and

xn = ωcJn

[
(µ22− µ11) ε

~ω

]
(12)

HereJn is the Bessel function [16] of integer ordern with |n| > 1. As was done in Sect. 2.2 for̃aj (t),
the initial conditions applied toaj (t) werea1(t = 0) = 1; a2(t = 0) = 0. Note that the expression for
1I given in (12) for the situation being considered here has the same form as that given in (8) for the
situation considered in Sect. 2.2.
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2.4. The effects of a time-dependent nonresonant field at the crossing
The case of primary interest in the current work whereωres ≈ ωc andω � ωres will now be

investigated. These conditions correspond, respectively, to the static external fieldξ being close to
the crossing valueξC, and to the frequency of the oscillating field being far above the resonance value.
Much of the previous development still applies. The HamiltonianH of (10) is valid. The time-dependent
solution8′(t) ofH must satisfy (5) with superposition constantsa′j (t), but the primes have been added
to indicate explicitly that the solution is qualitatively different from that discussed in Sect. 2.3. The
a′j (t) satisfy (11), but different approximations will be introduced.

The physical problem now being considered is quite different from those previously discussed in the
literature. In particular, it is quite different from the usual two-level problem discussed by Shimoda [15],
and from the problem of the multiphoton transitions described in Sect. 2.3. In both the former and the
latter, the rotating-wave approximation is made; while, in the latter, a near-resonance assumption is
made that the angular frequencyω of the applied oscillating field or itsnth harmonicnω is close (or
equal) to|E2− E1| /~. In the problem considered in the current section, both the rotating wave and its
counter-rotating partner are off-resonance by about the same frequency difference sinceω � ωres. In
spite of this, becauseω0 = 0, a single assumption can be introduced that is equivalent to the rotating
wave approximation and the near-resonance assumption combined.

To solve (11) for thea′j (t), the substitution given in eq. (7) of ref. 2 is made,

a′j (t) = ei(µjj ε/~ω) sinωtXj (t) (13)

Then a Fourier expansion of ei[(µ22−µ11)ε/~ω] sinωt is carried out. This yields

i~
dX1(t)

dt
= 1

2
~ωc

+∞∑
n=−∞

Jn

[
(µ22− µ11)ε

~ω

]
e+inωt e−iω0tX2(t)

i~
dX2(t)

dt
= 1

2
~ωc

+∞∑
n=−∞

Jn

[
(µ22− µ11)ε

~ω

]
e−inωt e+iω0tX1(t)

(14)

It is now assumed thatω0 vanishes.6 This simplifying assumption is justified by the fact that the
experimental data were taken with|ξ − ξC| = 0 (to within experimental error). It is then noted that the
analog of resonance occurs for this case whennω = ω0 = 0, i.e., whenn = 0. Sincen specifies the
harmonic of the effective applied radio-frequency field that results from the substitution made in (13),
the (n = 0) case corresponds to the resonance being driven by the D.C. component of this effective field.
The assumption will be made that only this (n = 0) component is important to the time evolution ofX1(t)

andX2(t). ThisD.C. assumptionis equivalent to the combination of the rotating-wave approximation
and the near-resonance approximation because, whenn = 0, the value ofω is irrelevant (within very
broad limits). Once the D.C. assumption is made, (14) becomes

i~
dX1(t)

dt
= 1

2
~ωcJ0

[
(µ22− µ11)ε

~ω

]
X2(t)

i~
dX2(t)

dt
= 1

2
~ωcJ0

[
(µ22− µ11)ε

~ω

]
X1(t)

(15)

The differential equations (15) have the exact solution

X1(t) = cos

(
ωcJ0

[
(µ22− µ11)ε

~ω

]
t

2

)
(16)

6 Of course,ωc was not set equal to zero.
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Fig. 1. Comparison between the numerical solution of (14) and the analytical solution given in the second equation
of (17). The former was used to generate the open dots, while the latter was used to generate the line.

so that∣∣a′1(t)∣∣2 = cos2
(

1

2
�0t

)
, �0 = ωcJ0

[
(µ22− µ11) ε

~ω

]
(17)

Here J0 is the Bessel function [16] of order 0. It is interesting to note that the expression for�n
obtained from (12) has the same form as that for�0 in the current case where the frequencyω is far
above resonance.

The accuracy of the analytical solution given in (17) is illustrated in Fig. 1 by making a compari-
son with the numerical solution of (14). To characterize the analytical solution for

∣∣a′1(t)∣∣2, the value
of (�0/ωc) was calculated with the second equation of (17). To characterize the numerical solution,
(�0/ωc) was calculated with�0 obtained from the first equation of (17) using the numerically deter-
mined value of

∣∣a′1(t)∣∣2. To generate Fig. 1, the comparison was made for various different sets of values
for t , ωc, ω, andε covering the range relevant for the current experiment. From Fig. 1, it is clear that
the analytical solution and the numerical calculations agree very well indeed.

3. Experimental details and results

3.1. Background

The basic molecular beam electric resonance (MBER) apparatus has been described in detail else-
where [17,18]. The experimental methods and conditions were very similar to those used before for
CH3SiH3 [9,14]. The sample was made by reducing CH3SiCl3 with LiAlH 4. The data were taken using
the ion peak with a mass-to-charge ratio of 44. The seeded-beam technique was used; a 5% mixture
of methyl silane in argon at a backing pressure between 1 and 1.5 bar (1 bar = 105 Pa) was expanded
through a 50µm nozzle with the source at room temperature. The velocityv of the molecules in the
beam was∼550 m/s and the rotational temperature was∼5 K. The measurements were taken in the
ambient magnetic field.

The static and oscillating electric fields in the transition region were generated by the Pyrex C-field
described in ref. 19. See, in particular, the coating pattern of the plates shown in Fig. 1 of ref. 19. For the
anticrossing measurements, it was necessary to observe only transitions with1mT = 0, wheremT is
the eigenvalue of the component alongξ of the total angular momentum. Consequently, the C-field was
connected in the parallel plate configuration withξ andε parallel. Four different sections with lengths
along the molecular beam of 2.2, 3.6, 2.1, and 2.0 cm were available. The wires connecting to these
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Fig. 2. Free-decay intensity as a function of the lengthl of the C-field. The solid triangles are the measurements,
while the line represents the best fit to the experimental data using (8).

sections were accessible from outside the vacuum. Using these wires, the four sections were divided
into anactive regionto which the oscillating fieldε was applied when necessary, and aninactive region
to whichε was not applied. The active region (of lengthl) consisted of either a single section, or a set
of contiguous sections. The static field on the inactive region was sufficiently different from that on the
active region that the inactive region did not have to be taken into account in analyzing the data. In this
way, the effective interaction timeτ = l/v in the avoided-crossing region could be varied.

3.2. Free decay of the molecular state
The first experiment was carried out with the static electric field set to the crossing value (ξ = ξC,

ω0 = 0), and with no oscillatory exciting field present. This is the situation considered in Sect. 2.2. The
molecules enter the C-field7 after being state-selected by theA-focussing field in the level that has a
positive Stark effect. In the notation of Sect. 2.2, all molecules enter the avoided-crossing region in state
(j = 1); that is,ã1(t = 0) = 1. TheB-focussing field operates as an analyzer, defocussing molecules in
levels with a negative Stark effect. Consequently, molecules leaving the C-field in the(j = 2) state are
removed from the beam, and the signal1Ĩ at the detector is given by (8) witht = τ = l/v. In practice,
the experiment was carried out by first measuring the intensity withξ = ξC and then subtracting the
corresponding intensity measured with the static electric fieldξ switched to a value far enough away
from ξC that no transitions occur as the molecular beam passed through the C-field. Note that1Ĩ < 0,
since a decrease in signal occurs whenξ = ξC .

The signal1Ĩ was measured for a number of lengthsl of the C-field. The observed points were fit
to (8) with v = 550 m/s andω0 = 0. The only adjustable parameters in the fit wereνc = ωc/2π and
the signal normalization. The best fit to the experimental data was obtained forνc = 4.2(1.0) kHz.8

The experimental measurements and the best calculated fit are compared in Fig. 2. In assessing this
comparison, it must be remembered that accurate measurements of intensity in an MBER experiment
under these conditions are quite difficult, since the accuracy depends on various experimental conditions,
such as inhomogeneities in the static electric field, which can change with the length of the C-field. The
agreement in Fig. 2 is consequently regarded as satisfactory, a conclusion supported by the fact that the
value obtained forνc agrees quite well with the more accurate result determined in Sect. 3.3.

7 It is understood from the context that the term “C-field” refers here only to the active region.
8 Uncertainties given in parentheses here and elsewhere forνc are of Type A and represent one standard uncertainty for this

parameter, as obtained from the various least-squares fits to experimental data described in the text.
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Fig. 3. Normalized intensity of the resonant single-photon transition as a function of the amplitudeε of the
oscillating field: (a) ν = ν0 = 100 kHz; (b) ν = ν0 = 200 kHz. The solid symbols are the experimental data. The
lines were obtained by fitting the data to (12).

3.3. Analysis of multiphoton transitions

In our earlier work [2], a series of measurements on OPF3 and CH3CF3 was presented for the values
of ε at which sin2

(1
2�nτ

)
in (12) reaches itsfirst maximum.9 In ref. 2, the valueε associated with

this first maximum was denotedE(n)opt. See, in particular, column 6 of Tables I and II of ref. 2. These
measurements were done for various values of the numbern of absorbed photons. They led to values
of νc for the anticrossings studied.

Similar measurements were made here forn = 1 for the avoided crossing being studied in CH3SiH3,
in part to determineνc by another method. In the current work, the frequencyν = ω/2π of the oscillating
field was set to 100 kHz and the static fieldξ was used to tune the energy level spacing to resonance for
the one-photon transition. Withξ andν fixed, the signal1I was measured as a function of the amplitude
ε of the oscillating field. The experiment was then repeated withν = 200 kHz. The results are presented
in Fig. 3a for ν = 100 kHz and in Fig. 3b for ν = 200 kHz. Several maxima were observed in each
case.

The results for each value ofν were fit to (12). The dipole parameter(µ22− µ11) = µ; see Sect.
2.1. Thus, the only adjustable parameters again wereνc and the signal normalization. As can be seen
from Fig. 3, the agreement was very good for each value ofν. In assessing the quality of the fits, it

9 For most of the cases investigated here, the first maximum in the transition probablity at the resonance(nω = ω0) occurs at
the value ofε for whichJn [(µ22− µ11) ε/~ω] reachesits first maximum.
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Fig. 4. Relative intensity as a function of the difference(ξ − ξC) between the applied static electric fieldξ and
the field valueξC at the crossing: (a) the amplitudeε of the oscillating field = 3.7 V/cm; (b) ε = 1.7 V/cm.
The downward-pointing peaks (negative signals) arise from then-photon resonant transitions, while the upward-
pointing peak (positive signal) arises from the perturbation of the dephasing atξC. In (a), transitions forn as high
as 15 can be seen on each side of the crossing.

must be recognized that, for the case described by (12), the positions of the maxima in the plots of Fig.
3 are insensitive toνc and are determinded only by the Bessel functionJ1 [(µ22− µ11) ε/~ω], whose
argument has no adjustable parameters. The agreement for the positions of the first three maxima in
Figs. 3a and 3b is particularly satisfying.

The best fit values forνc were 4.7(6) kHz forν = 100 kHz and 4.9(6) kHz forν = 200 kHz; the
average value is 4.8(5) kHz. It was found empirically that the depth of the modulation in the plots of
Fig. 3 is determined byνcl/v. In the fits shown here, it was assumed that all the molecules had the same
velocity v of ∼550 m/s. However, the typical spread in the molecular velocities is about 10%. This
spread produces a damping of the modulation depth, so that the best fit value obtained here forνc is a
little too small. In spite of this, the agreement with the value ofνc obtained in Sect. 3.2 is good.

A different type of study was carried out in which the angular frequencyω and amplitudeε of the
oscillating field were kept fixed, while the static fieldξ was scanned through the region of the crossing
value ξC. It is scans of this type that were used to make preliminary searches for anticrossings, as
discussed in Sect. 1. In such a scan, then-photon resonance condition discussed in Sect. 2.3 was met for
many values ofn on both sides of the crossing. This can be seen in Fig. 4. The downward-pointing peaks
(negative signals) are produced byn-photon resonant transitions, while the very strong upward-pointing
peak (positive signal) arises from the perturbation of the dephasing atξC to be discussed in Sect. 3.4.
The data were taken withε = 3.7 and 1.7 V/cm in panels (a) and (b), respectively, of Fig. 4. In both
cases,ν = 100 kHz andl = 10 cm. As in the other studies,v = 550 m/s. The spacing between the
peaks should be approximately constant, and the curves should be symmetric aboutξ = ξC. The peak
intensities of the variousn-photon transitions were fit to (12); the only adjustable parameters were again
νc and the signal normalization. A good fit was obtained. The best fit values forνc were 5.2(5) kHz and
5.6(9) kHz forε = 3.7 and 1.7 V/cm, respectively. The weighted mean of 5.3(4) kHz is in agreement
with the determinations made by the other methods.

3.4. Perturbation of the dephasing of the molecules at the crossing

Experimental studies were carried out of the nonresonant transitions described in Sect. 2.4 in which
the static fieldξ is set at the crossing valueξC. To understand the observed signals, the detection
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Fig. 5. Normalized intensity due to the perturbation of the dephasing plotted as a function of the amplitudeε of
the oscillating field causing the perturbation for (a) ν = 100 kHz; (b) ν = 200 kHz. The static electric field is set
at the crossing value. The solid symbols are the experimental data. The lines were obtained by fitting the data to
(17).

method must be examined in some detail. In the experiment, the amplitudeε of the oscillating field was
square-wave-modulated on-off and a signal proportional to the number of molecules passing through
the analyzer was obtained with a lock-in detector. As usual, the modulation period was long compared
to the transit timeτ of the molecules through the C-field. The detector signal is a measure of how many
molecules are in state(j = 1) at the end of the C-field. During the half of the modulation cycle when
the oscillating field isoff, the molecules entering the C-field region follow the free decay (dephasing)
discussed in Sect. 2.2, and the population of the(j = 1) state at the end of the C-field is given by
|ã1(τ )|2; see (8). During the half of the modulation cycle when the oscillating field ison, the situation
discussed in Sect. 2.4 applies and this population is given by

∣∣a′1(τ )∣∣2; see (17). The observed signal is

proportional to the difference between these two populations, i.e., proportional to
∣∣a′1(τ )∣∣2 − |ã1(τ )|2.

Thus, the observed signal results from the perturbation by the nonresonant oscillating field of the
essentially resonant dephasing process that occurs when the oscillating field is off. Of course, since
|ã1(τ )|2 is independent ofε, the detected signal will be determined by

∣∣a′1(τ )∣∣2 except for a constant
which is of no interest under the experimental conditions used here.

Intensity measurements were carried out as a function ofε with the static fieldξ set to the crossing
valueξC. Data were taken first forν = 100 kHz and then forν = 200 kHz. In panels (a) and (b),
respectively, of Fig. 5, these data are compared to the best fits obtained using (17). The only adjustable
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parameters again wereνc and the signal normalization. As was the case for the signals shown in Fig. 3,
these free parameters do not affect the values ofε at which the intensity maxima occurred. The positions
of these maxima are very insensitive toνc, and are largely determined by the maxima in the Bessel
functionJ0 [(µ22− µ11) ε/~ω], whose argument is fixed once the experimental conditions are known.
The observation of as many as three maxima for each value ofν and the agreement of the observed
positions of the maxima with their theoretical counterparts were particularly satisfying. The best fit
values obtained forνc were 2.9(8) and 3.2(8) kHz for panels (a) and (b), respectively, with a mean of
3.1(6) kHz. As was argued in Sect. 3.3, these values will be a little too small because the velocity spread
in the molecular beam was not taken into account. Nonetheless, the value ofνc still seems to be too
low. However, given the 10 to 20% statistical errors typical in these determinations, the agreement is
satisfactory.

4. Conclusion

A novel type of nonresonant absorption signals has been observed with molecular beam techniques
in a two-level anticrossing system when the external static electric fieldξ is at (or near) the crossing
valueξC. These signals have been shown to arise from the ac Stark effect in systems where the energy of
at least one of the levels has a linear dependence on the external electric field. When the two levels are at
the crossing field and no oscillating electric field is applied, a dephasing occurs that can lead to a large
transition probability. When an oscillating field is applied, a significant perturbation of the dephasing
is produced that leads to the nonresonant signals detected. The dependence of the signal strength on
the amplitude and frequency of the oscillating field has been studied, and shown to agree well with
calculations based on this dephasing process. Because the signals are strong and nonresonant, they
provide the basis for a sensitive, rapid-scan method of measuring the crossing field that is particularly
useful when the initial uncertainty in the crossing value is large.While this method has been demonstrated
only with the molecular beam method, it may well be useful in studies of avoided crossings with other
techniques.

The oscillatory behaviour of the intensities as a function of the amplitude of the ac field provides
the basis of a method for determining the magnitude(νc/2) of the matrix element coupling the two
levels undergoing the avoided crossing. The particular avoided crossing studied here is between the
two levels10 (J = 1,K = ∓1, σ = 0,mJ = ±1, 0 = E1) and(1,±1,∓1,±1, E3) in CH3SiH3.
In this case, there are in general three nuclear hyperfine interactions that can contribute toνc/2: the
spin–rotation HamiltonianHt

sr for the protons in the methyl top;11 the dipole–dipole HamiltonianHt
ss

for pairs of proton spins in the methyl top; and the corresponding interactionH
tf
ss between a proton in

the methyl top and a proton in the silyl frame. It has been shown in ref. 13 that the matrix elements
of Ht

ss are significantly larger than those ofHtf
ss , and soνc/2 is expected to be due primarily toHt

ss+
Ht

sr. The mean value obtained here forνc/2 is (2.3± 0.5) kHz. If νc/2 were due only toHt
ss, then this

coupling matrix element would be 4.7 kHz, as was calculated from the molecular geometry and the
proton g-factor [13]. Within the error, this is a factor of two larger thanνc/2, but this fact is believed to
be accidental. It appears that theHt

sr andHt
ss contributions are approximately equal; however see also

Sect. 4B of ref. 13 and Sect. 5.3 of ref. 11.
While the current measurements ofνc/2 have considerable scatter and their interpretation must be

substantiated with further work, it is clear that the current method of measuringνc/2 has the potential
to provide a useful technique for studying these symmetry-breaking hyperfine interactions. When the
minimum separationνc between the two interacting states is larger than the instrumental resolution,

10 See footnote 4.
11 It can be seen from Table XIII of ref. 13 that the spin–rotation Hamiltonian for the protons in the silyl frame cannot couple

the two levels involved in the particular avoided crossing being discussed here.
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the value ofνc can be determined by frequency measurements. However, whenνc is significantly
smaller than the linewidth, this cannot be done. Under these circumstances, a procedure such as that
developed here can be very useful. Similar molecular beam methods involving intensity studies have
been demonstrated earlier, for example, in refs. 2 and 8.
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