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The avoided-crossing molecular-beam electric resonance method has been used to determine the leading parameters in the 
torsion-rotation Hamiltonian of CH&F,, which was selected as a prototype for the case of a symmetric rotor with small ( Q 500 

kHz) internal rotor splittings. Stark anticrossings have been studied for (K= f 2-r 1) with J= 2-6; hypertine anticrossings have 
been studied for (K= &2-O), ( f2*k 1). and ( z!z l-0) with J<2. A detailed investigation of the hyperfine case has been 
carried out involving selection rules, relative intensity calculations, Zeeman studies, and combination differences. Several pure 
rotational transitions for the lowest two torsional states have been measured between 93 and 114 GHz with a mm-wave spectrom- 

eter. The (J= 1+-O) transition in the ground torsional state has been measured with the molecular beam spectrometer. Stark and 
Zeeman studies have been carried out with conventional molecular beam techniques. It has been determined that the effective 
rotational constant Afl= 5502.904( 3) MHz, the effective height ofthe threefold barrier to internal rotation VH= 1093 ( 11) cm- ’ 
and the moment of inertia of the methyl top I,= 3.2 l(4) amu A2. It has been found that the electric dipole moment ,u= 2.34720( 13) 
D and the distortion dipole moment constant pr,= 3.220( 11) pD. The magnitudes and signs of the molecularg-factors have been 
obtained: g, = - 0.0226 ( 13 ) nm and g, = -0.117 ( 1) nm. In addition, values have been determined for the B-rotational constant 
and several distortion constants. 

1. Intmduetion 

The avoided-crossing method of studying internal 
rotation in symmetric tops is now well established 
[ 11. Conventional microwave spectroscopy cannot 
provide precision values for the leading torsional 
terms in the Hamiltonian of a symmetric rotor be- 
cause these terms are conserved in the allowed dipole 
transitions. However, the anticrossing method breaks 
many of these selection rules and provides, in favour- 
able cases, for the determination of the height V3 of 
the three-fold barrier to internal rotation, the mo- 
ment of inertia Z, of the molecule about the symme- 
try axis, and the corresponding moment of inertia Z, 
of the top undergoing the torsional oscillations. 

The anticrossings can be classified according to two 
different characteristics. When classified in terms of 

the mechanism which mixes the two levels that inter- 
act in the crossing region, the avoided crossings are 
labelled “Stark” or “hyperfine”. In the Stark case, the 
mixing matrix element q arises from the distortion 
dipole moment ,& [ 2,3]. The selection rules are 
AJ=O, f 1; AK= 23; Aa=O; Am_,=& ? 1. Here K 
and mJ, respectively, are the eigenvalues of the com- 
ponents of the rotational angular moment Jalong the 
symmetry axis and the external static electric field i #I. 
The index a=O, k 1 labels the three torsional sub- 
levels for each value of the principal torsional quan- 
tum number V. In the hyperfine case, ?j arises from 
the internal interactions involving the nuclear spins 

*’ The symbol t has been used throughout this paper to indicate 
the electric field. We have chosen t rather than E to avoid con- 
fusion with the energy. 
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in the top and the frame. A list of the selection rules 
for the spin-spin and spin-rotation interactions in- 
cludesAJ=O, ? l;AK=O, & 1, +2;AmJ=0, & 1, +2. 

When the anticrossings are classified in terms of 
the type of energy that is changed in the correspond- 
ing zero-field transition, the cases are labelled “bar- 
rier” or “rotational”. In the former, the energy of rigid 
rotation is conserved (AIK] ~0); in the latter, it is 
not conserved (A]K] ~0). 

Following a preliminary study of CH3CF3 [ 41, de- 
tailed investigations were carried out for CH3SiH3 
[ 5 1, CH3SiF3 [ 6 1, and CH3CD3 [ 7 1. For each of the 
three molecules studied in detail, the barrier anti- 
crossings could be observed. If the A-rotational con- 
stant is known, then the barrier type of anticrossing 
by itself can be used to get V3 and I,. However, for a 
molecule with a high barrier and a large dipole mo- 
ment p, the crossing fields for the barrier avoided 
crossings are so low that the associated spectra are 
obscured by the normal Stark transitions. This will 
be called the high barrier case. CH,CF3 falls in this 
category. 

For such cases, the determination of V3 and 1, must 
be made from rotational anticrossings. In the high 
barrier limit, the Stark anticrossings for 
(K= ? 2~ T 1) yield a symmetric triplet which pro- 
vides only a single constraint on V3 and Z, [4]. The 
hyperfine avoided crossings provide a second con- 
straint. However, unlike the barrier and the Stark ro- 
tational cases, the crossing fields for the hyperfine ro- 
tational cases are subject to shifts from the diagonal 
terms in the high barrier hyperfine Hamiltonian. As 
a result, precision studies of high barrier molecules 
have not been previously carried out. It is the pur- 
pose of the current work to use CH3CFJ as a proto- 
type for such a precision study. 

Two recent investigations have laid the foundation 
for a good deal of the present work. In the first, the 
lineshape function for a transition in a molecule with 
a linear Stark effect was derived [ 8 1. In the second, 
the detailed selection rules for the spin rotation and 
classical spin-spin interactions were obtained and the 
matrix elements were calculated [ 91. These two works 
made it possible to predict the relative intensities of 
the different anticrossing signals for the case where 
the spin-spin terms dominate. The present study of 
CH3CF3 provides a test of some these predictions. 

The current work is divided into nine sections. In 

section 2, the theoretical background is presented. The 
torsion-rotation and nuclear hyperfine Hamiltoni- 
ans are discussed with emphasis on the selection rules 
for the hyperfine terms that break the torsion-rota- 
tion symmetry. The basis is laid for relative intensity 
calculations by discussing the two-level transition 
probability for the case where a large linear Stark ef- 
fect must be taken into account. Section 3 describes 
the experimental methods and conditions for the 
beam studies. Section 4 presents the measurement of 
the rotational spectrum by both mm-wave absorp- 
tion and molecular beam spectroscopy. In addition, 
section 4 presents the measurement of the electric di- 
pole moment. 

Sections 5 and 6 describe the anticrossing spectra 
and the preliminary analysis for the Stark and hyper- 
fine cases, respectively. The hyperfine anticrossing 
studies involved arguments concerning selection 
rules, relative intensities, effective g-factors, and 
combination differences. Section 7 deals with the de- 
termination of the torsion-rotation parameters. 

Section 8 presents a series of studies on related 
subjects: the J-dependence of the effective dipole 
moment, the distortion dipole moment, and the mag- 
nitude and signs of the molecular g-factors. Finally, 
section 9 summarizes the results of the current work 
and discusses some of the implications for other 
investigations. 

The determinations made here of the various mo- 
lecular parameters in CH3CFs are given in table 1. 

2. Theory 

2.1. Torsion-rotation Hamiltonian 

The torsion-rotation Hamiltonian HTR has been 
discussed in detail in connection with various studies 
of CH3SiH3 [ 5,10,11]. Here we shall introduce only 
the terms relevant to the current study. In the inter- 
nal axis method (IAM ), HTR can be formally written 
as 

HTR = H# + H$k’ . (1) 

In zeroth order in the IAM, the rotational and tor- 
sional degrees of freedom are completely decoupled 

and 
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Table 1 2.2. The nuclear hyperJine interactions 
Molecular constants for CH,CFa 

Quantity Units Value 

fllr(OCS) =) 3.281928(64) 

Pa’ D 2.34720( 13) 
PJb’ 1O-6 D -0.66(20) 

rue 1O-6 D 3.220( 11) 
gn nm -0.0226(3) 

& nm -0.0177( 1) 
AC” MHz 5502.904(3) 
B MHz 5189.176(2) 

4 kHz 1.278(9) 

DJK kHz 1.983( 12) 

P 0.0349(4) 
V$ cm-’ 1093(11) 
F’$ MHz -76.17(3) 

a) Here p represents the dipole moment in the JK= 3 r2 state. 
b, The sign of p, is defined relative to that of A. 

The nuclear hyperline Hamiltonian HHyP for mol- 
ecules such as CH&Fs has been the subject recently 
of a detailed theoretical investigation [ 91. This 
Hamiltonian can be expressed in terms of J, the re- 
sultant vector 1r for the three hydrogen spins in the 
top, and the resultant vector IF for the three fluorine 
spins in the frame. Here we shall discuss briefly the 
relevant terms in HHvP with emphasis on the selec- 
tion rules. 

The nuclear hyperfine Hamiltonian can be for- 
mally written as 

(2) 

The first two terms form the Hamiltonian H&O) for 
rigid rotation, while the last two form the pure tor- 
sional Hamiltonian i?Z_tP) , J, and p are, respectively, 
the rotational and torsional angular momenta about 
the symmetry axis. The angle (Y measures the tor- 
sional displacement of the CHJ top from the stag- 
gered configuration relative to the CF3 frame. The re- 
duced rotational constant F=A/ [p( 1 -p) 1, where 

P=4J~,. 

HHYP = HW + &J + &r + HFF + HTF . (4) 

Here HTJ and HFJ are the spin-rotation interactions 
of J with IT and IF, respectively. The three remaining 
terms in eq. (4) are the three possible spin-spin 
Hamiltonians: HTT for the top-top coupling, HFF for 
the frame-frame coupling, and HTF for top-frame in- 
teraction. Each spin-spin term includes only the clas- 
sical contribution, so that it is a second rank tensor 
with a coupling constant that can be calculated from 
the structure. The electron-coupled terms are ex- 
pected to be small and are not considered here. The 
spin-torsion interactions of the torsional angular 
momentum p with IT and IF are also negligible. 

Here the first-order Hamiltonian H& can be taken 
as 

H& = - DJJ4 - DJKJ2J; - DKJ: 

- [DJ~s’-F&( 1 -cos 3a)] J* 

-[DK~2-F3K;(1-~~~3~)] J:. (3) 

The first three terms are the usual quartic centrifugal 
distortion contributions. The remaining terms arise 
from quartic torsion-rotation interactions. 

Several of the constants in HTR must be considered 
to be effective parameters because of the truncation 
of the Hamiltonian. A detailed discussion of the ef- 
fective parameters and the difficulties in separating 
them is given elsewhere [ 10,111. 

The wavefunctions used to calculate the Hamilto- 
nian matrix are in the high-field representation ap- 
propriate to the anticrossing experiments. A large 
static electric field Q is assumed to be in the space- 
fixed Z-direction. A static magnetic field B is as- 
sumed to be parallel to l and to have a magnitude 3 2 
mT. The representation is characterized by the quan- 
tum numbers A = ( vJKam,; Z,m,Z,m, ) . Here mT and 
mr are, respectively, the eigenvalues of the Z-com- 
ponents of IT and IF. The Hamiltonian is, of course, 
diagonal in the magnetic quantum number mTOT of 
the total angular momentum: mToT= mJ+ mr + mF. 
For a detailed description of the role played by E and 
B in determining the representation, see section 4.A 
of ref. [ 9 ] and section 2.A of ref. [ 12 1. 

The symmetries of the difirent parts of the total 
wave function in the IAM are discussed in terms of 
the extended permutation-inversion group GIF) by 
Hougen et al. [ 91. In this group-theoretical ap- 
proach, p is approximated by the rational fraction p/ 
m, where the integers p and m can be as large as the 
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experimental accuracy requires. The torsion-rota- 
tion symmetry I’,, can be properly defined in IAM 
for the unextended molecular group G, B [ 9,13 1. This 
symmetry is given as a function of (v, J, K, a) in table 
IIofref. [14]. 

In order to discuss the selection rules, we represent 
the five terms in eq. (4) in turn from left to right by 
H&, I = 1, 2, . . . . 5. The matrix elements of interest 
can then be written formally as (A, I H&. I A, ) . In 
accordance with the convention adopted in [ 12 1, the 
indices (Y and /.I, respectively, label the upper and 
lower states when e is much smaller than the crossing 
field E,. It is convenient to write each matrix element 
as the product of a torsional (T), rotational (R) and 
nuclear spin (N) factor: 

the IAM takes the form e3nia elqa elrW, where n is any 
positive or negative integer, q= - 1, 0, + 1, and 
r= - 2, - 1, 0, + 1, + 2. The p/m in the tables of ref. 
[ 9 ] has here been replaced by p. The factor e3nra pro- 
vides for the Fourier decomposition of the cY-depen- 
dent function which is present in the particular 
H& under consideration. The factor elW (together 
with e3”la if n # 0) acts as a ladder operator on o and 
gives the a-selection rule. For example, e-‘* gives 
Aura,-op= - 1 with n=O and Aa= +2 with n= 1. 
The factor elrpa acts as a ladder operator in K and gives 
the K-selection rule. For example, e+12@ gives 
AK= K, - K,= - 2. The K- and rr-selection rules for 
the torsional factor of each H&& are given in table 
2. These can then be used to deduce the allowed 
changes in the torsional-rotation symmetry rm. 

where ]nT) = IuKo); IAR) = IJKmJ); InN) = 

1 ITmTbmF >. 

The selection rules of particular interest are those 
on K and o. In the left hand column of tables IX-XII 
of ref. [ 9 1, the live nuclear hyperfine interactions 
H&& are given in terms of IAM “nuclear spin” op- 
erators. Because the operators are in the IAM, they 
act on both the rotational and nuclear spin degrees of 
freedom. However, they do not act on the torsional 
part of the wavefunction; see eq. ( 13 ) of ref. [ 9 1. The 
entire a-dependence is shown explicitly in these ta- 
bles and can be used directly to deduce the (K, (3) 
selection rules for the torsional matrix element in eq. 

(5). 
The a-dependence of the hyperfine interactions in 

The selection rules on J, mJ, mT, and mr follow 
from angular momentum arguments applied to the 
rotational and nuclear spin factors in eq. ( 5 ). For ex- 
ample, the spin-rotation interactions involve only 
first-rank operators in J and so Am,=O, 2 1, while 
the spin-spin interactions involve second-rank op- 
erators in J and so Am, in this case is 0, + 1, f 2. A 

full list of the selection rules is not given here. 
There are two similar situations in which the nu- 

clear spin factor in eq. (5 ) provides an additional 
constraint on AK beyond those listed in table 2. These 
involve HTT and HFF. Consider Hn first. Here 
Am,=O. Since AmToT=O, we have AmT= -Am* If 
lAmJ] ~2, then lAm,I ~2. However, if 1?&=4, 
I Am, I < 1. In this case, the associated AK becomes 
forbidden. A similar situation arises for HFF. This 
does not happen for HTF because I Am, I = 2 implies 
that both mT and mr change by a single unit. Argu- 

Table 2 

(K, u) selection rules for the torsional factor in the nuclear hyperfine IAM matrix elements ‘) 

‘) The same selection rules apply to the overall hypertine matrix elements with a few exceptions, which arise from Hn; and Hrr. In these 

exceptional cases, further restrictions on AKare produced by the nuclear spm matrix elements. See section 2.2. 

b, These matrix elements vantsh. 
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ments similar to those used here for HTI and HFF lead 
to the conclusion that, in OPF3 for example, the 
(AK=O) matrix elements vanish for the fluorine- 
fluorine dipolar interaction if K/3 is not an integer 

[151. 
The most striking result in table 2 is the fact that 

HTT and Hn; will not couple levels with AK= f 1, 
whereas HTF will do so. A similar result was obtained 
for CsV molecules. For OPFS, the fluorine-fluorine 
classical dipolar interaction does not allow AK= f 1, 
whereas the phosphorus-fluorine interaction does al- 
low AK= + 1. See table 3 of ref. [ 12 1. This table also 
provides a useful comparison for the other selection 
rules. 

2.3. The transition probabilities 

The peak intensity of the resonance signal for the 
anticrossing &w/i, is proportional to the on-reso- 
nance transition probability denoted here by PO. For 
most of the cases of interest under the experimental 
conditions used here, the two levels A, and A, can be 
treated as an isolated two-level system. In the stan- 
dard treatment [ 16 ] of the two-level problem, PO can 
always be made unity (at least in principle) by in- 
creasing the amplitude eRF of the oscillating electric 
field driving the transition. However, because of the 
ac Stark effect, the two-level treatment must be mod- 
ified if the energy difference between the two states 
varies linearly with the electric field [ 8 1, and, in some 
cases, PO cannot be made unity by varying eRr. The 
modified two-level problem has been considered re- 
cently both for the general case and for the specific 
case of an avoided crossing [ 8 1. The analysis devel- 
oped will be applied here. 

The on-resonance transition probability can be 
written in general as 

P,={siny,}*. (6) 

When the resonance frequency y. is much larger than 
the minimum energy separation u, that exists at the 
crossing field e. we can, to excellent approximation, 
write 

Yo =27WJ, (zo) ; 0) 

zo = 1 &+I +w/h”o I . (7b) 

Here rl is the matrix element (in Hz) mixing the lev- 
els &. and /i, while t is the transit time through the 

oscillating field. J, is the first-order Bessel function 
[17].Ittakesitsmaximumvalue (J,),,,of0.58187 
when its argument takes the value ( zO),,,== of 1.84 1. 
Akfl is the derivative of the transition frequency with 
respect to (E- E,) when only the linear Stark effect is 
taken into account. Since all the avoided crossings of 
interest here have J, = Ja= J, 

A~~8=~U(K,m~-KBm/B)IJ(J+ 1). (8) 

For a given value oft, there exists for 1 q 1 a thresh- 
old value I VT I that divides the dependence of PO on 
eRr into two regimes. This threshold is defined by: 

I117.I=1/[4t(J,L,a,l. (9) 

When y. = 4x, PO = 1. However, below threshold when 

lrll< 1~1, (J,)max is too small to permit y. to meet 
this “ix condition”, and the maximum value of PO is 
less than unity. In this case, the value &F of rf am- 
plitude ERF which maximizes PO is given by eq. (7b) 
with zo= (z~),,,~=. As long as I q I < I ti 1, &? depends 
only on Apa,, and on vo. On the other hand, above 
threshold when I t,~ I 3 I e 1, the ix condition can be 
met and the value of e:F is given by eq. (7a) with 
yo= ix cPF then does depend on t and q. The value 
of cgp is most sensitive to q when the fx condition 
is met for I z. I so small that J, is proportional to zo. 

The maximum value of the transition probability 
can be written: 

(PO),, ={sin(fztflti)]*, ltll G Iv~l , 

=l, Itll3lthI * (10) 

Since (PO),, will be much less than unity when I q/ 
VT I cc 1, there will be lines with small I q/fi I which 
will be below the noise level in a particular experi- 
ment and therefore not detected. 

3. Experimental details 

The basic molecular beam electric resonance 
(MBER) apparatus has been described in detail else- 
where [ 18 1. The methods and conditions used for the 
avoided crossing experiments are very similar to those 
used in earlier studies of this kind [ 5-7,12,19 1. A ro- 
tationally cold beam was produced by expanding a 
mixture of 4% CH&FI in argon through a 50 urn 
nozzle at a backing pressure of 1 bar. The source was 
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held a1 room temperature. The velocity of the mole- 
cules in the beam was - 550 m/s and the rotational 
temperature was - 5 K. Commercial gases were used. 
The beam was monitored at the ion fragment 
CH,CF; . 

The quartz C-field used for 0PF3 [ 121 was em- 
ployed. This C-field had two sections with different 
coatings: a 62 mm long section coated for only 
(Ammr=O) transitions and a 120 mm long section 
coated for (Am TOT= 0, ? 1) transitions. The former 
was used for the anticrossing spectra while the latter 
was used for the dipole measurement and for calibra- 
tion purposes. 

The accuracy of absolute measurements of zero- 
field energy separations was limited ultimately by the 
long-term stability and resettability of the voltage 
source. These were specified to be no larger than 20 
ppm. The corresponding limit for relative measure- 
ments of small energy difference was 2 ppm set by the 
short term stability of the voltage source. A detailed 
discussion of this stability and of the calibration of 
the electric field has been given earlier [ 12 1. 

4. Preliminary experiments 

4.1. Rotational transitions 

In order to determine the rotational constant B and 
the distortion constants associated with J-dependent 
terms in eq. (3), mm-wave spectra were obtained 
with a saturation-modulation absorption spectrome- 
ter. A detailed description of this instrument has been 
given by Kuijpers et al. [20]. The absorption path 
was 35 cm long and the cell was at room temperature. 
The (J=9+-8) and (J=10+9) spectra were ob- 
served for both v=O and ~1. The (J=ll+lO) 
spectrum was obtained only for V= 0. The linewidths 
were 200 kHz, so that the K-splitting could be re- 
solved for the higher K-values, but the a-splittings 
could not be resolved. The accuracy of the frequency 
measurements was - 25 kHz for U= 0 and - 100 kHz 
for V= 1. The results are presented in table 3. Each of 
these is an average over the three a-values. 

In addition, the (J= 1+-O) transition was ob- 
served in the ground torsional state in a conventional 
MBER experiment in zero external electric field. Here 
only (KC 0) is allowed and two distinct u-levels ex- 

Table 3 

Frequencies ‘) for (J+ 1 +J) pure rotational transitions in CHsCF, in the ground and first excited torsional states. All entries are in MHz 

J K Ground state Excited state 

observed observed - observed observed - 

value calculated value calculated 

0 0 10370.280(6) 0.006 

8 4 93328.241(30) 0.015 

8 5 93327.909(30) 0.008 

8 6 93327.493(30) -0.012 

8 7 93327.023(30) -0.013 

8 8 93326.479(30) -0.017 

9 5 103696.700(25) 0.000 

9 6 103696.258(25) -0.002 

9 7 103695.741(25) 0.002 

9 8 103695.140(25) 0.001 

9 9 103694.466(25) 0.008 

10 5 114065.194(25) 0.001 

10 6 114064.720(25) 0.011 

10 7 114064.138(25) 0.001 

10 8 114063.480(25) 0.004 

10 9 114062.732(25) 0.005 

10 10 114061.881(25) -0.010 

93182.444( 100) -0.038 

93182.067(100) -0.091 

93181.760(100) -0.004 

93181.285( 100) -0.009 

93180.770( 100) 0.018 

103534.769( 100) 0.006 

103534.328( 100) 0.003 

103533.794( 100) -0.009 

103533.207( 100) 0.006 

103532.574( 100) 0.051 

‘) Each entry is an average over u, because the u-splitting was not resolved. 
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ist. These were not resolved; the result given in table 
3 is again an average over 0. 

4.2. Thk electric dipole moment 

A precision determination of the electric dipole 
moment was made by a conventional MBER study 
of the (AZ= 0, Amp f 1) spectrum. Measurements 
were carried out for the states .ZK= lo, 1 k i, and 3 +2. 
Each spectrum appeared as a single structureless line 
with a full width at half height of _ 15 kHz. The ex- 
cess broadening over the instrumental line width of 
4 kHz was attributed to nuclear hypertine effects. 

Although all the data were consistent, the final value 
for p was based on a measurement of a 3+* transi- 
tion. This particular choice was made because the 
frequency is independent of hyperfine shifts [ 15 ] and 
of the anisotropy in the polarizability. The transition 
for ( mJ= T 1 +O) was measured at 240.97 MHz in 
an electric field of 1226 V/cm. The field was cali- 
brated with the (J, m,) = ( 1, T 1) -, ( 1,O) transi- 
tion for OCS in the ground vibrational state. Table 1 
lists the absolute value obtained for the dipole mo- 
ment of CHSCFS in the 3 k z state along with the value 
relative to the OCS moment in the ground vibra- 
tional state, which was taken from ref. [ 2 11. 

5; Stark rotational anticrossings 

A series of (AZ= 0 ) Stark avoided crossings with 
(&= f 2)*(K,= T 1) has been studied for each J 
between 2 and 6. The mixing between levels A, and 
/i, is provided by the distortion dipole moment pD as 
defined in ref. [ 22 1. The torsion-rotation symmetry 
Z,, is conserved, as well as 0. Because the operator 
involved has no nuclear spin part, the nuclear spin 
quantum numbers AN = (Z,m,Z,mr ) do not change. 
Since transitions between the two interacting levels 
are possible only when (Am,=O), it follows that 
Amp 0 as well. 

The energy level scheme for the anticrossing 
(.Z,=2, K,=f2, mF=f2)-(Jp=2, Kg=~l, 
ml = k 2) is shown in fig. 1. The three allowed Stark 
anticrossings are indicated by heavy dots. Consider 
an electric field e far enough below the lowest of the 
three crossing fields that each pair of interacting lev- 
els is separated by an amount large compared with its 

(J,KP,r I 
Energy 

1.2 K.‘2-_;lStark Crmslng 

II 500 1000 

ELECTRIC FIELD i V/cm) 

Fig. I. Schematic plot against the electric field of the energy lev- 
els involved in the Stark anticrossing with J=2, K= +2++f I, 
MI= k 24+ + 2. Upper signs go with upper and lower with lower. 
The dots indicate the allowed Stark anticrossings; all were ob- 

served. With a few simple changes, this plot can also be used for 
the hypefineanticrossingwithJ=2, K= +2-f 1, m,= & l+q I; 
see section 6.1. 

minimum separation Y, that exists at ec. At such a 
field, the spectrum will consist of a triplet whose 
members fall in the same order and with the same 
separation as they would in the limit e-0. (This is a 
normal spectrum as defined in section 2.B of ref. 
[121.) 

A typical anticrossing spectrum of this type is 
shown in fig. 2. The triplet is centered at about 1500 
kHz. It is almost symmetric with the left hand split- 
ting being a little larger (58 kHz) than the right hand 
splitting (50 kHz). The three zero-field energy sep- 
arations can be treated as frequencies and are de- 
notedby $L,~=~sYi.~i, 6.0, V”+I.+,. 

Precision measurements of the absolute crossing 
field were made of fir ,,T , for J= 2,3,4,5 and 6 and 



248 W.L. Meerts, I. Ozler / Torsion-rotation energy levels of CH3CF3 

1 

1150 1500 1550 
-v CkHzl 

Fig. 2. Spectrum of the Stark anticrossings with J= 2, K= k2-r 1, m,= f 2~ + 2. Each line corresponds to a different torsion-rotation 
symmetry far, which is conserved in this type of antictossing. The splittings have the same values as they would at very low electric 
fields. The measurement was taken below the crossing in a field of 796.2 V/cm. Eight sweeps were averaged. 

Table 4a 
Zero-field frequencies in the ground torsional state of CH$F, determined from absolute anticrossing measurements. All values are in 
MHz 

J Upper state Lower state Label Observed Observed- 
value calculated 

K, 0, rtfT K8 06 f& I” IIb’ 

2 f2 0 E, Yl 0 El Stark 941.154(18) 0.003 
2 f2 T1 E2 Tl Tl E2 k, Stark 941.202( 18) 0.001 
3 +2 Tl E2 Tl ?I E2 I+’ T I.7 1 Stark 941.172( 18) 0.006 
4 f2 Yl E2 Tl Yl E2 vs r 1.T I Stark 941.125( 18) 0.007 
5 f2 +1 E2 71 +1 E2 vs r1.71 Stark 941.066( 18) 0.009 
6 f2 Tl E2 Yl 71 E2 vs T1.71 Stark 941.998( 18) 0.013 
1 fl 0 E, 0 +I E4 VH 0,*1 Aa-AI 313.281(10) -0.012 
2 +1 0 El 0 fl E4 $:: Ba-B 1 313.274( IO) -0.012 
2 f2 0 E, fl Tl E3 Ca-C 1 

i 
940.706( 18) 0.004 

2 +2 0 El 0 fl E4 O,fl Da-D1 1254.432(24) -0.004 
2 f2 0 E, 0 +I E, P 0.*1 Ea-E 1 1254.418(24) -0.018 

‘) The first and second subscripts stand for a,, and a, respectively. The superscripts S and H indicate Stark and hypetfme anticrossings, 
respectively. 

‘) For the hyperline anticrossings, this provides a cross-reference to ftg. 3 and table 5. The capital letters specify the values for states cr 
and B of J, K, and m,. The lower case letters and the numbers specify the observed frequency and the a-assi@tment, respectively. 



Table 4b 
Internal rotor splittings in the ground torsional state of CHsCFs determined for relative anticrossing measurements. All values are in 
kHz 

Calculated 

label .sb) value 

Key *) Observed 

label w) value 

Observed - 
calculated 

Stark: K= f 2-r 1 
~s,,,*,(J=2)-v$o(J=2) 
~s,,,,,(J=2)-~~,,(J=2) 
~s,,,*,(J=3)-v8,o)J=3) 
~s,,,,,(J=3)-~~,o(J=3) 
vql,*,(J=6)-u$,(J=6) 
yS,,r,(J=6)-v8,o(J=6) 
vs,.,,(J=5)-ve,,(J=2) 

-57.8 F, Y -58.3(8) -0.5 
50.9 F, Y 50.2(8) -0.7 

-57.8 F, Y -58.1(8) -0.3 
50.9 F, Y 50.6(8) -0.3 

-57.9 F, Y -58.1(1.0) -0.2 
51.0 F, Y 50.9(5) -0.1 

-144.1 F, N -137.8(1.9) 6.3 

Hypertine set A: J= 1, K= f l-0 
v(2)-v(1) 
v(3)-v(l) 
v(4)-v(l) 

412 
432 
449 

v(5)-v(l) 844 

u(6)-v(l) 880 

Hyperfine set B: 5~2, K= + l-0 
v(2)-v(l) 
v(3)-u(l) 
v(4)-v(l) 

412 
432 
449 

v(5)-v(1) 844 

v(6)-v(t) 880 

Hyperfine set C: J= 2, K= k 2~ + 1 

u(2)-v(1) 
u(3)-v(l) 
u(4)-v(1) 
v(5)-v(1) 
v(6)-v(l) 
v(7)-v(1) 
u(8)-u(l) 
u(9)-v(l) 

36 F, Y 
391 S, N 
427 U 
449 F, S, Y 
463 U 
499 S, N 
839 F, Y 
912 F, Y 

Hyperfine set D: J= 2, K= f 2-O 
u(2)-v(1) 
u(3)-v(1) 
u(4)-v(1) 
v(5)-v(1) 
v(6)-v(l) 

391 
432 
463 
822 
895 

Hypertine set E: J=2, K= k 2-O 
u(2)-v(l) 
u(3)-v(1) 
u(4)-v(l) 
v(5)-u(1) 
u(6)-~(1) 

391 
432 
463 
822 
895 

U 
U 
T, N 
U 
U 
U 
U 
U 

U 
U 
T, N 
U 
U 
U 
U 
U 

::: 
U 
U 
F, N 

::f: 
U 
U 
F, N 

W)-uW 
u(c)-u(a) 

v(d) - u(a) 

u(e)-v(a) 

439( 10) 
825( 10) 

-10 

854( 10) 

887( 10) 

u(b) - da) 
4c)-u(a) 

u(d) - v(a) 

v(e)-u(a) 

4wlO) 
825( 10) 

-5 

850( 10) 

890( 10) 

0)-u(a) 46( 10) 10 

u(c)-u(a) 448( 10) -1 

u(d) - u(a) 841(10) -2 

u(e)-u(a) 899( 10) -13 

u(b)-u(a) 401(10) 10 

u(c)-u(a) 424( 10) -8 

u(d)-v(a) 898( 10) 3 

u(b)-v(a) 399( 10) 8 
u(c)-u(a) 418( 10) -14 

u(d)-u(a) 889( IO) -6 

‘) For the Stark case, this provides a cross-reference to table 4a. 
‘) For the hyperfine case, this provides a cross-reference to table 5 and fig. 3. 
‘) For the Stark case, no cross-reference is needed here. 
d, This describes the u-assignment. F - firm; T - tentative; Q - questionable; U - unassigned, S - coincident with Stark anticrossing; Y - 

yes, included in tit; N - no, not included in fit. 
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Fig. 3. The observed and calculated spectra for the tive sets of hypertine anticrossings that were studied. For each set, the upper part 
shows the experimental spectrum (manually smoothed) and the lower section shows the stick spectrum calculated from the torsional 
splittings using the parameters in table 1. For reference purposes, in each set, the observed lines are labelled a, b, c, . . . from left to right 
and the predicted sticks are labelled 1, 2, 3, . . . again from left to right. See table 5 for the u and rnr assignments of the sticks. For the 
experimental spectra, the vertical scale is constant only within each individual section; it is not the same from section to section within 
each set, or from one set to the other. For the calculated sticks, the intensities are not represented. The horizontal scale is the same 
throughout; the tick marks are 50 kHz apart. Within each set, the markers at f 450 kHz show the offsets that apply relative to the central 
reference. 
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of I&, for J= 2. Splitting measurements were carried 
out far from the crossing for J= 2,3 and 6. A relative 
measurement was made of r$ I ,T , (for J= 5 ) with re- 
spect to V$ l,r L (for J= 2). This was not included in 
the torsional analysis, but was used to investigate the 
Jdependence of the dipole moment (see section 8.1) . 
The relative measurements were accurate to G 10 
kHz, but the absolute frequencies were limited to _ 20 
kHz by the calibration problem. The measurements 
are listed in table 4. 

6. Hyperfine rotational anticrossings 

6.1. Observations and preliminary analysis 

Five sets of (AJ= 0) hyperfine avoided crossings 
have been studied with J= 1 or 2. Each set can be dis- 
tinguishedbyitsvaluesofJ,=JP=J, (K,,m,)-(Z$, 
mp) . For each set, an absolute measurement was made 
of the zero-field splitting for the lowest frequency 
member and relative splitting measurements were 
made for the others. The results are listed in table 4, 
along with the predicted values (see below). 

The five spectra are sketched in fig. 3. Each spec- 
trum is normal; i.e., it is taken at a field e far enough 
below the crossing field that the splittings are the same 
as they would be for a small electric field. For refer- 
ence purposes, the five sets are labelled with the cap- 
ital letters A, B, . . . . E. Within each set, the individual 
lines observed are labelled from low frequency to high 
with lower case italic letters from a to however many 
are required. 

The energy level scheme is shown in fig. 4 for set 
A: (J= l), (? 1, ? 1)~(0, 0). As will be discussed 
below, each of the six possible anticrossings is al- 
lowed by at least one of the nuclear hyperline inter- 
actions. The stick spectrum in fig. 3 shows the fre- 
quency splitting among these six as calculated from 
the torsion-rotation Hamiltonian HTR in eq. ( 1) , us- 
ing the parameters in table 1. All the sticks are of equal 
height as no attempt has been made in fig. 3 to rep- 
resent the calculated intensities. For reference pur- 
poses, the sticks predicted are labelled from low fre- 
quency to high with 1, 2, . . . . For each stick, table 5 
lists (L a,, GT )-(&, a,, Gr ). 

As can be seen from fig. 4, the three possible upper 
states consist of two (Us # 0) levels that are closely 

Energy 
I J.K,a, r I 1 

(l.rl,~l.E,l _ 
(1 tl rl E I__ , I 4 2’ 

lWl,E,l 

l1,0,O,A,l 

I=1 l(.t1-0 HyperfIneCros?lng 

0 500 
ELECTRIC FIELD IV/cm) 

Fig. 4. Schematic plot against the electric field of the energy lev- 
els involved in the hypertine anticrossings with J= 1, K= f l-0, 

tn,= f 1-O. Upper signs go with upper and lower signs with 
lower. There is one exception: both sign orders for u in the E, 

level must be considered (see section 6.1). For clarity, the sea 
ond-order Stark effect of the (K= 0) states has been exaggerated. 
The dots indicate the allowed hyperfme anticrossings. See set A 
in tig. 3, tables 4 and 5. 

spaced ( N 35 kHz ) and a third (o,= 0) level that falls 
well below ( N 440 kHz). Since the lower state has 
KpO, there is only one possible energy for os# 0. The 
(a,= 0) level is well below, again by about 440 kHz. 
From this energy level structure, the splitting pattern 
for set A in fig. 3 is easily deduced. It consists of a 
single low frequency line, a central triplet, and a high 
frequency doublet. The frequency range spanned by 
the triplet is the same as that spanned by the doublet, 
namely N 35 kHz. The centre of the triplet is halfway 
between the singlet and the centre of the doublet. The 
entire pattern spans N 880 kHz. 

Fig. 3 and table 5 present parallel information for 
the other four sets. For each of sets B, D and E, the 
lower level has KB= 0 and the upper level has I&= f 2 



Table 5 
Assignments for u and r,,, mixing mechanisms, g-factors, and relative intensities for hypertine anticrossings 

Index a1 Upper state Lower state tl b) I cak 

SetA:J=l;K=~l~O;m,=~l-0 
1 a 

2 

b 

c, d 
d, e 

SetB:J=2;K=flcrO;m,=f2crO 
I a 0 

2 kl 

3 0 
4 b T1 

5 c, d kl 
6 d, e Yl 

SetC:J=2;K=f2~fl;m,=~]-fl 
1 a 

2 b gT+& 
3 
4 
S C gT+& 

6 

7 

8 d 

9 e &+gF 

SetD:J=2;K=~2crO;m,=f2-+1 
1 a gT 

2 b 

3 C t?F 

4 

5 
6 d gT 

5 

6 d 2&?T 

0 

+1 

0 
fl 

+1 
?l 

El 

E2 

E, 
E3 

Ez 
E3 

0 
0 

kl 
kl 

0 
*1 
Yl 
kl 
Yl 

0 

kl 

0 
fl 

fl 
Yl 

0 

+I 

0 
+I 

&I 
Tl 

El 

E2 

El 
E3 

E2 
ES 

E, 
El 
E3 
E3 
El 
E2 
E2 
E3 
E2 

El 

E3 

El 

E2 

E3 

E2 

E3 

El 

E2 

E3 

E2 

+1 
Tl 
&I 
TI 

0 
T1 
*I 

0 
0 

E4 
E4 
E4 
E4 
Al 
E4 
E. 
AI 
Al 

T1 
kl 
Tl 
*1 

0 
T1 
?l 

0 
0 

fl 
Yl 
fl 
Yl 

0 
71 
fl 

0 
0 

+I 
Tl 
+I 
+I 

0 
+1 
+1 

0 
0 

E4 TF 
E4 TF, TJ 
E4 TF, FJ 
E4 TF 

A2 TF, FJ 
E4 TF, FJ 
E4 TF, TJ 
A2 TF, TJ 
A2 TF 

TF 
TF 
TF 
TF 
TF 
TF 
TF 
TF 
TF 

E3 TF 0.62 
E2 TF 2.13 
E3 TF 1.62 
E2 TF 1.23 
El TF 5.38 
E3 TF 1.23 
E2 TF 4.17 
El TF 0.62 
El TF 2.13 

E4 TF, TT, TJ 
E4 TF 
E4 TF, FF, FJ 
E‘i TF, TT, TJ 
Al TF, FF, FJ 
E4 TF, FF, FJ 
E4 TF 
Al TF 
Al TF, TT, TJ 

E4 TF, TT 4.00 

E4 TF 0.38 

E4 TF 0.01 
E4 TF 0.001 
Al TF, FF 8.00 
E4 TF, FF 4.00 
E4 TF 0.38 
Al TF 0.38 
A, TF, TT 8.00 

*) The talc. index labels the sticks in each set of fig. 3 from left to right. The obs. index labels the observed lines in each set of fig. 3 from 
left to right. The firmness of the correlation between the two is indicated in table 4b. 

b, This specifies the mechanism responsible for the mixing matrix element 9 by giving the subscripts on the pertinent operators in eq. 

(4). 
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or f 1. As a result, the energy level scheme and split- 
ting patterns are similar (to a greater or lesser de- 
gree) to those of set A. While the details may change, 
for these four sets, at least the general form of fig. 4 
will apply. 

However, set C is different in that KB# 0. Here the 
general form of fig. 1 can be used. Two modifications 
must be made. First, I mJ[ must be changed from 2 
to 1. This implies a decrease by a factor of two in the 
magnitude of all slopes and a doubling of the crossing 
field (if the quadratic Stark effect is neglected). Sec- 
ond, upper/lower signs for the a-states couple to 
lower/upper for the @-states. The zero-field energy 
levels are not altered. All intersections correspond to 
avoided crossings allowed by group theory. The ex- 
pected splitting pattern (see fig. 3) consists of a low 
frequency doublet, a central quintet, and a high fre- 
quency doublet. The centre of the quintet is halfway 
between the two doublets and the entire pattern spans 
about 880 kI-Iz. 

Set C is different from the others in another impor- 
tant regard. Three of the sticks in fig. 3 and the cor- 
responding intersections in the modified fig. 1 are 
Stark-hyperfine hybrids, as defined in ref. [ 12 1. These 
three are the only ones which conserve r,,. They are 
C3, C5 and C7 (see table 5). Each of the three has 
(K,= 22, a,, m5=?1)++(KB=&l, as=-oa,, 
rn$ = T 1 ), when, as is assumed in table 5, the mixing 
is provided by nuclear hypertine interactions. How- 
ever, the distortion dipole will couple levels (K, = rt 2, 
G my=fl)*(KB=T1, ~~=a~, mj=+l). As 
piesented here, the a-states for the hypertine and 
Stark cases are the same, but the j?-states are differ- 
ent. If it were not for the nuclear spin quantum num- 
bers, the Stark state would be related to its hypertine 
counterpart simply by simultaneously changing the 
signs of K,, ofl and mf, a step which does not alter the 
torsion-rotation energy or the Stark energy. In zero 
magnetic field, the two hstates are degenerate and the 
effective Hamiltonian provides a 4x4 problem. As 
the B-field is increased, this reduces to two distinct 
2 x 2 problems. See fig. 2 of ref. [ 121. Because the 
mixing due to the distortion dipole is much larger than 
that due to the hyperfine terms, the lines for B= 0 can 
be considered to be Stark in nature. Although such 
lines were observed for C3, C5 and C7, only the ob- 
served central component (line Cc) is shown in fig. 
3; the other two have been omitted to simplify the 
diagram. 

For each hypcrtine anticrossing, the particular nu- 
clear hyperfine terms that can provide the mixing are 
listed in table 5. Sets A and D can involve spin-rota- 
tion interactions since 1 Am,] = 1, where the others are 
restricted to dipolar coupling since I Am,1 = 2. Sets D 
and E can involve HTT and Hw since ] AK1 =2, but 
the others cannot since I AKI = 1. The top-frame di- 
polar interaction is effective in all cases. 

For each case where Kfl= 0 and r[-r = E., , there are 
two possible values for as, namely + 1 or T 1. In these 
cases, it is possible that there will arise multi-level 
systems that cannot be treated as a series of distinct 
two-level systems. If it were possible to neglect HTF, 
then all such multi-level systems would reduce to two- 
level problems when a magnetic field is applied (e.g. 
line A4). However, if all the mixing matrix elements 
must be taken into account, then three-level systems 
occur which cannot be reduced. 

By assuming that a two-level treatment is ade- 
quate, it is possible to predict by using the methods 
of [ 91 the relative intensities of the different sticks 
within a given set, provided that only the dipolar in- 
teractions enter. These calculations have been done 
for sets C and E. The three factors forming the right 
hand side of eq. (5) were first calculated to get the 
mixing matrix element q for each magnetic compo- 
nent. The relevant structural parameters were deter- 
mined from ref. [ 231. It was then assumed that eRF 
was optimized for the particular magnetic compo- 
nent and eq. ( 10) was used to calculate the corre- 
sponding transition probability. The probabilities 
contributing to the anticrossing in question were then 
summed to give the results listed as Zcalc in table 5. 

The need for a weighted average over the magnetic 
components (rather than simply a sum) must be 
considered since in principle 6:;’ can be different for 
the individual magnetic components (see section 
2.3 ). Fortunately, this complication did not arise 
here. If I q I < I VT I, cgp depends only on ApaP and Y,, 
and so is (to excellent approximation) the same for 
all components of the same stick. If I ?,I I > I t,+ 1, and 
all components have the same q, then again all com- 
ponents can be optimized at once. All the sticks in 
fig. 3 fall into one or other of these two categories. 

One result that becomes apparent in calculating the 
intensities Zcalc in table 4 is that the matrix elements 
of Z&r are much larger in magnitude for L\K= k 1 than 
for M= f 2. A large part of the reason for this differ- 
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ence can be seen from eq. (59) of [ 9 1. Let us define 
the “length” of the molecule to be the distance be- 
tween the hydrogen and fluorine planes. Let us also 
define the “diameter” of the molecule to be the sum 
of the hydrogen and fluorine distances from the sym- 
metry axis. Then, roughly speaking, the magnitude of 
the ratio of the (AK= ? 1) and (AK= & 2) matrix 
elements of ZZTF will contain a factor equal to the mo- 
lecular length divided by a fraction of the molecular 

diameter. For AK= &2, the values of I (HTF) I are 

so small compared to those of I ( Hn) I and I ( HFF) I 
that the TF contribution is negligible in cases where 
another dipolar interaction contributes. This fact has 
been used in generating Zcalc in table 4. On the other 
hand, the Zcalc for TF with AK= ? 1 are of the same 
order as the Zcalc for TT and FF with M= f 2. 

Since Am,#O for all the hyperfine anticrossings, 
each anticrossing is magnetically active. Thus when 
a magnetic field is applied, each stick in fig. 3 splits 
into at least one pair of lines. Each such pair has a 
separation given in Hz by 2&,/h)B]g,,] where ,u~ 
is the nuclear magneton and the effective g-factor g,, 
is defined by eq. ( 19) of [ 121. It is often convenient 
to approximate geff by its dominant nuclear terms: 

&?=g= Am-r +g, Am,. (11) 

Here gT and g, are, respectively, the nuclear g-factors 
for the spins in the top and in the frame. There will 
be one pair for each possible combination 1 Am, 1, 
1 Am,= I . By measuring g, it is possible to determine 
the magnetic selection rules for the pair in question. 

Magnetic studies carried out for selected lines in 
sets A, C, D and E. The positive results found are 
listed in table 5. These should be interpreted only as 
indicating the dominant selection rules. Since lines 
with small I q/VT I can disappear into the noise (see 
section 2.3), the experimental evidence shows that 
the other possibilities are either forbidden or are as- 
sociated with much smaller mixing matrix elements. 

6.2. Assignments 

From a comparison of the observed and predicted 
spectra in fig. 3 along with the intensities in table 5, 
it is clear that the assignment poses some serious dif- 
ficulties. The first question to be addressed is the 
magnitude of the contributions to the zero-field ener- 
gies from the diagonal matrix elements of the nuclear 

hyperfine interactions. Let us compare sets A and B. 
The values of J are different. The values of ) Am,1 are 
different: set B can derive its mixing only from HTF, 
while set A involves the spin-rotation interaction as 
well. (See table 5. ) The diagonal hyperfine contri- 
butions will also be different. Yet the two spectra are 
virtually identical. From table 4, the splitting mea- 
surements differ by between 0 and 5 kHz. This simi- 
larity is not surprising if only torsion-rotation effects 
enter, because these are independent of m, and, to 
excellent approximation, of J. (Compare the stick 
spectra in fig. 3.) A comparison between sets D and 
E yields similar results with respect to both the ex- 
pected hypertine differences and the similarities in 
the observed spectra. Although the close matching of 
the frequencies of set A with B and of the set D with 
E may be fortuitous, it constitutes very strong evi- 
dence that the nuclear hypertine shifts from diagonal 
matrix elements are less than 10 kHz in magnitude. 

The second question to be addressed is the level of 
consistency that can be expected (in the absence of 
hyperfine shifts) when comparing absolute fre- 
quency measurements. From fig. 3, Y( A 1) - v (B 1) 
=Oandu(Dl)-v(El)=O.Fromtable4a,v(Aa)- 
v(Ba)=7 kHz and v(Da)-v(Ea)=14 kHz. The 
corresponding errors from the 20 ppm upper limit on 
the drift etc. of the voltage source are 14 and 34 kHz. 
It will therefore be assumed here that the level of con- 
sistency to be expected for absolute measurements is 
10 ppm. This limit is in agreement with that ob- 

served in OPF3 [ 12 ] where 7 ppm was measured us- 
ing the same apparatus. 

With limits of 10 kHz and 10 ppm, respectively, on 
hyperfine shifts and voltage uncertainty, combina- 
tion differences can be used to test various assign- 
ments. Such combination differences can be found 
because there are spectra for K= 2 2-0, K= I!I 1-O 
and K= k 2++ * 1. Consider stick C5 as an example. 
From the stick assignments in table 5, it follows that 
v(C5) can be expressed as v(El)-v(B1); 
v(Dl)-v(A1); v(El)-v(A1); v(Dl)-v(B1). To 
each stick, the best experimental frequency was as- 
signed and the four combination differences were 
calculated. Each combination difference was sub- 
tracted from v (Cc) (which has been assigned to C5 ) 
to generate what shall be called the loop defect. Fi- 
nally, the mean loop defect and its rms deviation were 
calculated. Two such combination difference tests 
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Table 6 
Combination differences for the zero-field frequencies of the hy- 
perfine anticrossings ‘) 

Index b, mean loop 
defect d, 

reference example c, of 
combination difference 

@Hz) 

upper line lower line 

Cl-Ca El-Ea B4-Bb -If8 
Cl-Ca E3-EC B6-Bd -11+14 
c2-Cb El-Ed BZ-Bb 46f8 
c2-Cb E3-EC BS-Bc 8k13 
cs-cc El-Ea Bl-Ba 6+9 
cs-cc E3-EC BfBb 27+12 
C&Cd EZ-Eb Bl-Ba -2+11 
C8-Cd ES-Ed B3-Bb -53k 14 
C9-Ce E4-EC Bl-Ba 36f13 
C9-Ce E6-Ed B3-Bb 5*14 

‘) For a discussion of the first entry for CS-Cc as an example, see 
section 6.2. 

b, The first part of each index (e.g. Cl ) specifies the quantum 
numbers and the second part (e.g. Ca) labels the experimental 
frequency. See table 5 and fig. 3. 

‘) For each reference, there are four possible combination differ- 
ences. Only one is listed here. 

d, The loop defect is the reference frequency minus the combi- 
nation difference. 

could be carried out for each of the live lines in set C. 
The results are given in table 6. The rms deviations 
in the loop defects are consistent with the 15 kHz 
value expected from the 10 ppm voltage uncertainty. 
Any mean loop defect that differs from zero by more 
than 15 kHz indicates that at least one assignment in 
the loop is incorrect. 

From fig. 3 and tables 4-6, several assignments can 
be made. First, line Cc can be taken as C5 since this 
is coincident with the Stark anticrossing. Second, the 
identifications of lines Aa, Ba, Da and Ea are unam- 
biguous. In each case, only one line is predicted and 
only one observed. Furthermore, the first CS loop in- 
volves only these 4 lines and Cc; the loop defect is 
small (6.3 kHz). Third, the assignments of Ca, Cb, 
Cd and Ce as shown in table 5 are firm. These are 
consistent with the combination differences, al- 
though this type of evidence is strong only for Ca. The 
intensity calculations predict that each doublet should 
have its stronger member on the high frequency side 
and that the two doublets have the same weak/strong 

intensity ratio. The observations agree with these 

predictions. Fourth, Ed must correspond to E6. The 
alternative assignment leads to a very large loop de- 
fect and would involve a much weaker anticrossing 
(Z,,,=O.38 as against 8.00). It follows then that Dd 
corresponds to D6. 

Several other tentative conclusions can be drawn. 
First, line Bb is dominated by stick B4, with perhaps 
a small amount of pulling by stick B3. Second, the 
triplet Bc, Bd, Be together corresponds to the pre- 
dicted doublet B5, B6. Similar statements can be 
made about set A. 

Each g-factor g’ measured is consistent with the as- 
signments made and the mixing mechanisms de- 
duced. See table 5. Three points in particular should 
be mentioned. First, the entire set C is predicted to 
derive its mixing from ZZTF. This has been confirmed. 
Second, line Ed goes with 2g,. This confirms that Ed 
arises from E6 and not from E5, which goes with 
gr+gF. Third, line EC goes with 2gr. This shows that 
EC can be assigned to E3 or E4, but not to E2, which 
goes with g, +g,. 

However, two puzzles remain. First, the sticks A5 
and A6 form a doublet with a torsion-rotation split- 
ting of 36 kHz, while the observations consist of a 
triplet AC, Ad and Ae which spans a frequency region 
[ v(Ae) - Y(Ac) ] of _ 64 kHz. The same statement 
applies to set B. From refs. [ 9 ] and [ 12 1, it is easily 
shown that the diagonal matrix elements of the hy- 
perfine interactions (alone) cannot be responsible for 
the extra splitting. In particular, the magnitude of the 
splitting and the close similarity of the two triplets 
pose serious difftculties in this regard. 

The second puzzle is associated with the observed 
doublet Eb, EC. From combination differences and 
the g-factors, line EC must be associated with stick E3 
(E2 and E4 can be excluded). The fact that E4 ap- 
pears to be missing in spite of the high intensity can 
always be attributed to “apparatus effects”. How- 
ever, line Eb seems to correspond to E2. This assign- 
ment is difficult to accept. Stick E2 has a very small 
intensity and the corresponding anticrossings in 
CH$iF, could not be observed; see ref. [ 61 and row 
3 of table XIV in ref. [ 91. It is conjectured that both 
Eb and EC correspond to E2, with the additional 
splitting provided by the same mechanism as is op- 
erating for the triplets in sets A and B. Similar argu- 

ments apply to set D. 



256 W.L. Meerts. I. Ozier / Tomon-rotation energy levels of CH,CF, 

If the conjecture above is correct, then both the 
doublet puzzle and the triplet puzzle involve the lev- 
els with ( KB= 0, as= 0). In this case, the addition of 
some Z-independent interaction involving the nu- 
clear spin and possibly the torsion might explain the 
observations. 

Another explanation is also being considered. In 
CH3CF3 some of the splittings between the torsional 
states are only a factor N 10 larger in magnitude than 
the expected hyperfine matrix elements q which break 
the torsion-rotation symmetry. For example, the two 
energy levels in ftg. 4 are separated by N 35 kHz, while 
the matrix element of ZZrr which couples the levels is 
N 2 kHz (see row 8 of table XIV in ref. [ 9 ] ). It may 
be that this mixing plays a role in the crossings. 

7. Torsion-rotation analysis 

A least squares analysis of the data set was carried 
out using the torsion-rotation Hamiltonian given in 
eqs. ( 1 ), (2) and (3). The data set consisted of the 
rotational frequencies in table 3 and a selection of the 
zero-field splittings in table 4. The Stark anticrossing 
component included all the absolute and splitting 
measurements except the difference [ v$ l,T, (J= 

5)--YsT,,T, (.I= 2 ) 1. The hyperfine anticrossing 
components included absolute measurements of the 
first line in each set and splittings for all the other 
lines in set C. This accounts for all the definite assign- 
ments discussed in section 6.2, except lines Dd and 
Ed. These two were omitted in the final fit because 
the large width of Ed in particular made it difficult to 
determine the frequency to the desired accuracy. In 
fact, the results did not change significantly when 
these two were included. All the zero-field splittings 
were determined from the crossing fields using meth- 
ods discussed earlier [ 5,241. The dipole moment was 
held fixed (for all .Z and K) at the value given for p in 
table 1. 

The final set of parameters is given in table 1. The 
differences between the observed and calculated val- 
ues are listed in tables 3 and 4. From these residuals 
and the comparison in fig. 3 between the stick spectra 
and the observed spectra, it is clear that the agree- 
ment is very good. There is clearly insufficient infor- 
mation to fit a further parameter. 

The most important constants fixed at zero in the 

fit were FSK, DK,,,, D_,,,, and DK. The effects of FSK and 
DK,,, have been absorbed into Aeff. This (rather than 
A) has been used to determine F and hence V3. This 
provides one of the reasons that only an effective bar- 
rier height can be found here. The effect of DJ,,, has 
been absorbed into F”,’ (see refs. [ 51 and [ lo] ). The 
neglect of DK decreases the value of Aeff by = 10 kHz. 
The constants fixed at zero cannot account for the 
puzzles noted in section 6.2. 

From Aeff and p, the moment of inertia Z, of the 
methyl top has been determined to be 3.21(4) amu 
A’. This can be compared with 3.170 (2) amu A2 for 
CH3SiF3 [ 6 1. The difference between the two values 
of Z, is less than the error. The uncertainty in Z, for 
CH&F3 is much bigger, in large part because the tor- 
sional splittings are much smaller. A similar state- 
ment can be made with regard to Qff and p. 

8. Related studies 

8.1. The J-dependence of the dipole moment 

It is well known [ 25,241 that for (AJ=O) matrix 
elements the effective dipole moment 

P( JN = PO + p.,J( J+ 1) + ,ud2 , (12) 

where b is the equilibrium moment (except for a 
small correction), while pJ and pK are distortion di- 
pole constants. The present measurements are insen- 
sitive to pK; it is not considered further. However, us- 
ing methods discussed earlier [ 12,6 1, it is possible to 
evaluate pJ. 

In principle it is possible to determine pJ from the 
absolute measurements of v$ L,T 1 given in table 4. As 
J increases from 2 to 6, the differences (ob- 
served-calculated) show a clear trend, which results 
[ 6,12 ] from the fact that pJ has been neglected in sec- 
tion 7. Unfortunately the trend is not significant if we 
take the level of consistency of the voltage source for 
absolute measurements to be 10 ppm (9 kHz ), as 
discussed in section 6.2. 

On the other hand, the relative measurement 

[v:L,7I (J=~)--v~,I,~, (J= 2 ) ] is limited to 2 ppm 
(2 kHz) by the short-term stability of the voltage 
source. This has sufficient accuracy to determine ,u& 
Fromeq. (4) ofref. [6], 
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G*,r*W=5) -eI*r*(J=2) 

=-~~]D~~+(A--B)~,/~uoI. (13) 

The term p2 in eq. (4~) of ref. [ 6 ] has been neglected 
because it is not significant here. The values of D,K, 
(A-B) and b have already been determined. The 
value of pJ obtained from eq. ( 13 ) is listed in table 1. 
This result can be compared to the value [6] of 
1.23( 26) uD for CH$iFS. 

The determination of ,u, here is uncorrelated with 
the determinations of the other parameters. It has 
therefore been possible to fix pJ at zero in the other 
studies carried out. 

8.2. The distortion dipole moment 

For a CsV symmetric rotor like OPFs, the mini- 
mum separation v, between the interacting levels in 
a Stark anticrossing (J, K,= & 2, my = kJ)o (J, 
+Tl,mj=+J)isgivenby [12] 

v,=~~~,J[(J-1)(J+2)]“2. (14) 

When the change is made to a molecule like methyl 
silane, this one anticrossing goes over into three, one 
for each possible r,,. However, eq. ( 14) can be ap- 
plied to each of the three individually provided the 
distortion dipole moment pb is re-interpreted and al- 
lowed to depend on Q [ 221. In the high barrier limit, 
the a-dependence should vanish, but pn still includes 
a torsional contribution; see eq. ( 17 ) of ref. [ 22 1. 

In CH&F3 for J= 6, the value of v, is large enough 
that anticrossing spectra can be measured, even when 
e=ie, and the resonance frequency is v, itself. Fig. 5 
shows a typical spectrum for r,,=E, taken within 
two linewidths of v,. For each r,,, measurements 
were made well below, near and well above the cross- 
ing. The results were analysed using the standard 
equations for a two-level anticrossing system [ 12 1. 

The value of v, was independent of r,, to within 
the experimental accuracy of 0.5Oh: the results were 
114.46(64), 114.16(57) and 114.39(81) kHz for 
r,, = El, E2 and E,, respectively. Thus to this level 
of accuracy, it is confirmed that PD is independent of 
g. The weighted average for v, of 114.3 1(38) kHz 
was used to obtain the value of ,& given in table 1. 
The corresponding value for CHSSiF3 is 2.13 (57 ) uD 
161. 

120 130 110 150 
-Y [kilzl 

Fig. 5. Spectrum for the Stark anticrossing with J=6, 
K= f2++T 1, a=T 1-r 1, m,= f6+++6 taken with the field 
just below the crossing value. The value of the minimum separa- 
tion Y,= 114.8( 1.0) kHz is indicated. 

8.3. The rotation g-factors 

Conventional MBER spectroscopy can be used to 
determine the magnitude and relative sign of the ro- 
tational g-factors parallel and perpendicular to the 
symmetry axis [ 15 1. These are represented by g,, and 
g,, respectively, in units of the nuclear magneton ~1~. 
With a magnetic field B parallel to the electric field, 
each line in the (AJ= 0, AmJ= f 1) Stark spectrum 
splits into two lines separated by 2 (pN/ h ) B ] g,, 1 Hz, 
where 

&K =g,, + (g,, -g1 )K2/J(J+ 1) . (15) 

The effects due to nuclear shielding are negligible 
here. Such Zeeman splittings were measured for 
JK= 1 o, 3 +, and 3 + 3 in a field of 820 mT. It was found 
that g,.,,=O.O1774( lo), g,.,=O.O193(2), and 
g,,,=O.O214(2). From these values, the values of ]g, 1 
and ] g, I were found and it was shown that g, /g, > 0. 
The results are given in table 1. 

Avoided crossing MBER spectroscopy can be used 
to determine the absolute signs of the rotational g- 
factors [ 4,121. As discussed in section 6.1, with B 
parallel E, the anticrossing spectrum consists of pairs 
of lines split by 2(&h)B]g,,(. For the anticrossing 
corresponding to stick C5 in fig. 4, it can be shown 
from eq. (19) of [ 121 that 

&ff=gT+gF-gR, (16) 



258 W.L. Meerts, I. Ozrer / Torsron-rotation energy levels of CHJF, 

where 

gR=2kl+%g,,-&)l. (17) 

A measurement made with B=40 mT led to the re- 
sult that geff= 10.8893 (40) nm. From the known val- 
ues for the nuclear g-factors [ 261, it follows that 
gR= - 0.19 1 ( 15 ) nm. From the results of the con- 
ventional study (see table 1)) gR = 5~ 0.197 (2) nm. 
The agreement for 1 gR 1 is excellent. Furthermore, the 
negative sign for g, shows that both g,, and g, are 
negative, as shown in table 1. 

9. Discussion 

The molecular beam avoided crossing method has 
been applied to the determination of the leading tor- 
sional parameters of a symmetric rotor (CH,CF,) for 
which the largest internal rotor splitting in the ground 
vibronic state are < 4 MHz. By using combination 
differences, selection rules, relative intensity calcu- 
lations, and Zeeman studies, a detailed investigation 
has been carried out of the hyperfine rotational anti- 
crossings. On the one hand, the frequency shifts due 
to the diagonal hyperfine matrix elements have been 
shown experimentally to be less than 10 kHz in mag- 
nitude. It has been possible for several anticrossings 
to make definite assignments of the torsion-rotation 
symmetries r$r and &. for the two interacting lev- 
els. The corresponding zero-field splittings have then 
been used to help evaluate V:ff and I,. On the other 
hand, for several (&, rg,) no definite assign- 
ments were possible. In some of the cases, anomalous 
spectral features appeared which could not be ex- 
plained in terms of the diagonal matrix elements of 
the torsion-rotation nuclear spin Hamiltonian. 

In the current work, considerable attention has been 
paid to the breaking of the torsion-rotation symme- 
try rR, near the crossing region by the nuclear hyper- 
line terms. However, in some cases, these same terms 
will produce interesting effects in zero field. Con- 
sider a molecule with the same torsion-rotation ener- 
gies as CH&F,, but with hyperfine matrix elements 
off diagonal in rRT which are a factor of 10 or more 
larger, as might arise from a quadrupole interaction. 
Then, in zero field & would no longer be a good 
quantum number and the energy levels would have 
to be calculated by diagonalizing the full Hamilto- 

nian. A similar situation arises in tetrahedral mole- 
cules [ 27,281. In that case, the rotational symmetry 
rR is a good quantum number Only so long as the 
splittings produced by the tensor distortion interac- 
tions dominate the symmetry-breaking terms in the 
nuclear hyperfine Hamiltonian. Thus, at low values 
of J, rR is a good quantum number in CH,,, but not 
in CF4. These effects have been studied at length in 
connection with level clustering in spherical tops [ 29- 
31 1. 
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