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The m-fold extended group Gi:‘, corresponding to the permutation-inversion group Gi8 for 
molecules like H3C-SiHr , has been obtained. In this group, m is the smallest integer for which 
mp is also an “integer,” where p is the usual ratio of the moment of inertia of the top about the 
A axis to the moment of inertia of the molecule about the A axis. The extended group has 18m 
elements, divided into (9m + 3)/2 or (9m + 6)/2 classes, for odd and even values of m, respectively. 
Using this group, it is possible to assign definite symmetry species in an internal-axis-method 
(IAM) treatment to laboratory-fixed, molecule-fixed, top-fixed, and frame-fixed projections of 
various vector operators, thus making it possible to express the spin-rotation and spin-spin con- 
tributions to the hyperfme interaction operator in terms of rotational angular momentum com- 
ponents, nuclear-spin angular momentum components, and functions of the torsional angle, all 
of which have known symmetry species and selection rules in the IAM basis set. Using a hyperfme 
Hamiltonian constructed on the basis of these considerations, together with a recent treatment 
of the two-level problem modified to take into account large first-order Stark effects, it is possible 
to rationalize the pattern of observed and unobserved avoided-crossing signals in recent molecular 
beam studies of symmetric-top internal rotor molecules. With this understanding, it also proved 
possible to detect for the first time one of the “missing” avoided-crossing signals in CH3SiH3. 
0 1991 Academic Press, Inc. 

1. INTRODUCTION 

In a series of earlier papers (l-8), two of the authors have developed and applied a 
new avoided-crossing molecular beam electric resonance technique for directly deter- 
mining: (i) the A (or C) rotational constant of symmetric-top molecules, (ii) the torsional 
splittings (and thus the barrier heights) for symmetric-top molecules exhibiting high- 
barrier internal rotation motion, and (iii) a variety of other parameters associated with 
symmetry axis rotation and internal rotation motions in symmetric-top molecules. 
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This technique requires the existence of a Stark-tuned avoided crossing. Two levels 
that could be brought by an external Stark field into exact energy coincidence, if there 
were no connecting matrix element, repel each other and do not cross. It was established 
(l-8) that, depending on the quantum numbers involved, the necessary coupling 
could be produced by the rotationally generated dipole moment perpendicular to the 
symmetry axis ( 9), or by the nuclear hyperfine interactions. 

However, a troubling puzzle remained. It was found for CH3SiH3 (5), CH3 SiF3 
(6)) and CH3CD3 ( 7) that certain avoided crossings could not be observed, in spite 
of their apparent similarity to those which were easily detected. For reasons inherent 
in the standard two-level problem (IO), a small magnitude for the coupling matrix 
element was not considered to be an adequate explanation for the anomaly: Within 
the framework of the standard two-level problem, the transition probability can in 
principle always be made unity by increasing the strength of the driving field, provided 
only that the coupling matrix element is nonzero. It was tentatively concluded (5, 6) 
that the matrix elements involved must vanish, but further investigation (7) showed 
that in fact the necessary coupling could be provided by the spin-spin interaction 
between nuclei in the top and frame rotors of these molecules. This puzzle provided 
the initial motivation for the current work. 

The present paper has evolved to serve three purposes. First, the extended group 
( 11) introduced for the asymmetric rotor F$-NO ( 12) is applied for the first time 
to the torsion-rotation problem in a symmetric top. This may facilitate analysis of 
high-precision data on torsion-rotation-vibration energy levels ( 13, 14). Second, the 
extended group is used to develop the nuclear hyperfine Hamiltonian in molecules 
such as H3C-SiH3. This lays the ground work for analysis of the nuclear hyperfine 
splittings that can now be observed by molecular beam techniques. Finally, a formalism 
is developed to evaluate mixing matrix elements arising from the spin-spin interaction. 
In an attempt to use these matrix elements properly, we have recently considered the 
two-level problem for a symmetric top where at least one level has a linear Stark effect 
(IS) and found that the transition probability cannot always be made unity. In fact, 
if the transition moment is small enough, the transition will be unobservable. The 
mixing matrix elements evaluated here are thus used in conjunction with these modified 
two-level transition probabilities ( 1.5) to explain the avoided-crossing anomalies (5- 
7) that formed the initial puzzle. 

For a symmetric rotor, both the principal-axis method (PAM) and the internal- 
axis method can easily be used to diagonalize the torsional Hamiltonian (16), and 
hence to treat vibronic, rotational, and nuclear spin problems. While the PAM is 
inherently simpler, it has the serious disadvantage that, in the high barrier limit, the 
problem does not readily reduce to that of a rigid rotor and a small-amplitude torsional 
oscillator (16). Thus, for example, it is difficult to isolate nuclear hyperfine terms 
which vanish in the high-barrier limit from those which would be present in simpler 
systems such as CH3F. On the other hand, the IAM does separate such terms “prop- 
erly,” an advantage which is particularly important in the early stages of an analysis. 
Unfortunately, in the IAM, the torsional and rotational wavefunctions, as well as 
many operators, do not transform properly according to the irreducible representations 
of the Gi8 permutation-inversion group (17), and the derivation of selection rules 
cannot be carried out in the IAM by conventional group-theoretical methods. It is in 
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large part to overcome this last difficulty that the extended-group formalism has been 
introduced. 

The extended-group formalism ( 11) developed here for molecules iike H3C-SiH3 
is based on many of the ideas used in an earlier extended-group treatment (12) for 
molecules like F3C-NO. The reasoning leading to the introduction of the extended 
group can be described for the F$Z-NO case as follows. One begins with the Longuet- 
Higgins permutation-inversion group ( 17) for F,C-NO, which contains as one of its 
elements the cyclic permutation ( 123), if the three fluorines are numbered 1, 2, and 
3, respectively. In this permutation-inversion group, ( 123)’ is clearly equivalent to 
the identity operation, since the net result of three successive ( 123) interchanges is 
that no fluorines have been interchanged. However, in an IAM treatment (16) of 
F&Z-NO, each forward rotation of the CF3 top is accompanied by a smaller backward 
rotation of the whole molecule (to cancel any angular momentum generated by the 
internal rotation motion ) . Thus, since ( 123 ) 3 represents a 2~ rotation of the CF3 top 
in, say, the forward direction, it must be accompanied in the IAM treatment by some 
rotation less than 27r of the whole molecule in the backward direction. Since the 
molecule is not restored to its original position in space by these two rotations, the 
operation ( 123)3 does not correspond exactly to the identity operation. If, however, 
we now perform ( 123 ) 3 m times, i.e., if we perform ( 123 ) 3m, then for a suitably chosen 
(and perhaps large) integer m, the molecule can be returned arbitrarily close to its 
original position. It is the existence of the extra operations ( 123)” with 4 ~5 n G 3m 
- 1 which gives rise to the additional elements in the extended group. The reader is 
referred to Ref. (12) for a description of the mathematics corresponding to the words 
in this paragraph. 

On another historical note, one of the authors proposed some time ago (18) the 
use of a double group for molecules like H3C-SiH3. This value of m = 2 for the 
extended group arose because the coordinate system considered in ( 18) for HJC-SiH3 
was closely analogous to the IAM coordinate system appropriate for molecules like 
H3C-CHs, with two identical coaxial rotors. However, for molecules like H3C-SiH3, 
with two nonidentical rotors, the coordinate system of (18) has neither the high- 
barrier advantages of the IAM system (16) nor the simplicity of the principal-axis- 
method system ( 26). It is our present opinion that the approach taken in ( 18)) while 
not technically wrong, is nevertheless ill-advised. Values of m # 2, as determined in 
the present paper, are clearly to be preferred. 

The remainder of this paper is divided into three main parts. In Section 2, the 
coordinate system, symmetry operations, and group theory are dealt with. In Section 
3, the spin-rotation and spin-spin contributions to the hyperfine Hamiltonian are 
explicitly constructed, in terms of operators having known symmetry properties and 
selection rules. In Section 4, the application to the anticrossing anomalies is discussed. 

2. EXTENDED-GROUP THEORY 

A. IAM Coordinate System 

We here follow closely the procedures of ( 12)) expressing the Cartesian coordinates 
of the atoms in terms of the vibrational and rotational variables used in the molecular 
wavefunction through the equation 
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R, = R + S-‘(xO$)[ai(a) + d,], (1) 

where the 3 X 1 column matrices R; and R contain the laboratory-fixed components 
of the position vector of atom i and of the molecular center of mass, respectively; the 
3 X 3 matrix S-r (x0$) contains the direction cosines, defined for ,!?’ (X6$) in Eq. 
(4) of ( 12) as functions of the rotational (Eulerian) angles; the 3 X 1 column matrix 
a;( ol) contains the molecule-fixed components of the reference configuration obtained 
after an internal rotation through the torsional angle 01 (to be defined more completely 
below); and the 3 X 1 column matrices di contain the molecule-fixed components of 
the infinitesimal displacement vectors used to describe the small-amplitude vibrational 
degrees of freedom. 

Before defining the reference configuration, it is convenient to imagine a molecule 
like H3C-SiH3 as consisting of a coaxial top rotor (e.g., the CH3 group) and frame 
rotor (e.g., the SiH3 group). The atom numbering scheme adopted here is illustrated 
in Fig. 1, indicating that hydrogens 1, 2, 3 are in the top, while hydrogens 4, 5, 6 are 
in the frame. It is then convenient to define the reference configuration a;( cx) in terms 
of an initial configuration a: through the equations 

a,(a) = S;‘(n, 0, 0). a: 

S,‘(cu, 0, 0) = s--‘( -0cp + a!, 0, O), i C top 

SF’( cy, 0, 0) = s--‘( -crp, 0, O), i C frame, (2) 

where 

P = Aopl ( ~ttop + ~fmne) (3) 

is the usual ratio (16) of moments of inertia about the internal rotation axis occurring 
in symmetric-top problems. The quantity Scu occurring in the argument of S-’ for 

(b) 

FIG, 1. (a) The initial configuration a: as defined in Table I. For the initial configuration, the xz plane is 
a plane of symmetry. (b) An internally rotated reference configuration a,(w), as defined by Eqs. (2). for (Y 
g +15” and p P f. 
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TABLE I 

The Initial Configuration” a: for Use in Eqs. (29 

Atom (aio)x (*i”)y Caio)z Atom (zI~=')~ (ai")y caio)z 

Hl (ato)x 0 (at“& - A, H4 klfOIx 0 laf"jz - A, 

H2 (-1/2)(ato), (-J3/2Nat0), (at"& - A, H5 (-1/2)(af")x (+J3/2)(af"), (af")z - A, 

H3 (-1/2)(at"), (fJ3/2)(at0), (at='), - A, Hrj (-1/2)(af")x (-J3/2)(af"), (af")z - A, 

C 0 0 (a$& - A, Si 0 0 (aSi')z - A, 

A, = 13m&1t'=)~ + 3q&af"& + m&C O) t mSi(asi0),l/(3rq + 3% + 0lC + mSj_: z 

%H bond lengths for the top are given by I(at0),2 + [(at0),-(aC0),J2~1/2; SiH bond lengths for 

the frame are given by ((af0jx2 + I(af0),-(aSi0)212}1/2. The quantity A, insures that the 

center of mass of the initial configuration lies at the origin. 

top atoms gives rise to the internal rotation of the top with respect to the frame; the 
quantity - ap in the argument for both top and frame atoms gives rise to the backward 
rotation of the whole molecule. Atom positions a: in the initial configuration, which 
are taken to be constants (and thus unaffected by differentiation, symmetry operations, 
etc.), are given in Table I in terms of the various bond lengths in the molecule. 

Constraint equations for the small-amplitude displacement vectors d i are as given 
in Eq. ( 14) of (12). Since the di will be neglected in this paper, these constraints will 
not be discussed further. Again as in ( 12), the reference configuration itself satisfies 
a number of equations: 

2 WZiaj(cX) = 0 

C mjai(a)-(da,/da) = 0 

C WZjaj( 01) X (daj/dCT) = 0. (4) 

The first of these indicates that the center of mass of the reference configuration remains 
at the origin during internal rotation. The second holds because bond lengths are not 
permitted to vary during internal rotation in the model adopted. The third equation 
indicates that no angular momentum is generated during the internal rotation motion; 
i.e., the coordinate system used for the reference configuration is an IAM coordinate 
system ( 16). It is the third equation which leads to the value of p given in Eq. (3). 

B. Symmetry Operations and Group Generators 

The point group appropriate for a molecule like HsC-SiH3 in either a staggered or 
an eclipsed equilibrium geometry is C’s”. The permutation-inversion group Gi8 ap- 
propriate for molecules like H$Z-SiH3 when internal rotation motion occurs has been 
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given by Bunker ( 19). His character table for this group is reproduced in Table Il. It 
can be seen that the group has two nondegenerate representations, A, and AZ, and 
four doubly degenerate representations El , E2, E3, and Ed. For the atom labeling of 
Fig. 1, the latter correspond to functions which are invariant to: rotation of the top 
alone, rotation of the frame alone, internal rotation of the molecule, and rotation of 
the whole molecule, respectively. (Although the handedness of the atom labeling 
scheme adopted here differs from that in Ref. ( 19), this difference affects neither the 
correspondence above nor the character table.) 

If the effect of the cyclic permutation ( 123) on a function of the laboratory-fixed 
Cartesian coordinates R, is defined to be 

(123)*f(Rr, Rz~ R3, Rc, Ra, Rs, R6, Rsi) 

E +f(Rz, RX> RI, Rc, %, Rs, %, Rsi), (5) 

etc., then it can be shown by direct substitution in Eqs. ( 1) and (2) that the variable 
transformations given in Table Ill are equivalent to the permutation-inversion oper- 
ations indicated. From the second line in Table Ill, we see that the operation ( 123)3 
does not represent the identity when applied to the rotational part of the molecular 
wavefunction, though it must of course be the identity when applied to the full wave- 
function. It is this peculiar behavior of ( 1 23)3 which leads to the introduction of an 
extended group ( 12). 

Let us now define three generators for the extended group, 

C,= (123) 

C,-= (456) 

u = (23)(56)*, (6) 

TABLE II 

Character Table for the Permutation-Inversion Group Cl8 for HjC-SiH3” 

[“lb PIG [ll E [21 (123) [21 (456) I21 (123)(456) 121 (123)(465) 191 (23)(56)* 

Al 1 1 1 1 1 1 

*2 1 1 1 1 1 -1 

El 2 2 -1 -1 -1 0 

*2 2 -1 2 -1 -1 0 

g3 2 -1 -1 2 -1 0 

g4 2 -1 -1 -1 2 0 

aFrom Ref. (2). 
bNb um er of permutation-inversion operations in each class. When the number is 2, the class 
consists of an element and its inverse. 

CA representative permutation-inversion element from each class, described using the atom 
numbering scheme of Fig. 1. (The slight difference in numbering from that used in Ref. (19) 
does not change the form of the character table from that given in Ref. (lJ).) 
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TABLE III 

Transformations of the Variables on the Right Side of Eq. (1) Corresponding to Various 
Permutation-Inversion Operations” on the Left Side of Eq. (1) 

PIa GENb c-o-mc ROTNd INT RoTNd VIBRATIONe j = fcn(i)e 

E B X,0,@ cl. di 

(123) Ct +E x-~~P/~,BA a-2n/3 c3/pe1dj j = i, i c frame; aj o = c3+1aio, i c top 

(456) Cf +R x-2n(p-1)/3,E,@ a-2n/3 C3/(p_l)-'dj j = i, i c top; ajo = C3“ai0, i C frm 

(23)(56)* o -B n-X,n-8,n+@ -a %dj a.0 = 
J ov-laio 

=The permutation-inversion operations act on the laboratory-fixed components of the position vectors of 
each atom IQ, using the numbering scheme of Fig. 1. 
bThe symbols for the generators of the extended group of Gig are to be used in Eqs. (7-9). 
CLaboratory-fixed components of the position vector of the center-of-mass. 
dThe rotational (Eulerian) angles and the internal rotation angle. 
eInfinitesimal displacement vectors for the small amplitude vibrations. The subscript j is defined as 
a function of the subscript i by the relations between initial vectors ai“ indicated in the last 
column of the table, where C,*l corresponds to +(2n/s,O,O) 
the rotation matrix s+~ 

with s = 3, 3/p or 3/(p-1). and where 
is given in Eq. (4) of Ref. (12); 0" = u(xz). 

where the equalities in Eqs. (6) are meant to indicate that these generating operations 
have the effects on the vibration-rotation variables in the molecular wavefunction 
indicated in the corresponding rows of Table III. If, following (12), we now chose the 
lowest integer m such that mp is also an integer p to within the desired precision (e.g., 
to within the experimental error on p), then it can be seen that the generating equations 
obeyed by the operations in Eqs. (6) become 

C:m = C;m = c2 = E, c,o = &m-i 

c: = c’, = c3, 3m-I Cfa = acr 

c,cf= CfC,. (7) 

From these generating equations it follows that a general element of the extended 
group can be represented as 

C3kCU C” t fOW, (8) 

where the limits 

OSWSl (9) 

on the superscripts in Eq. (8) indicate that the extended group has m X 3 X 3 X 2 
= 18m elements. 

The class structure of the extended group actually depends slightly on whether m 
is an even or odd integer (in much the same way that the class structure for the groups 
C’,,, differs for even and odd n) . By using the generating equations in Eqs. (7)) it can 
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be shown that the extended group G$’ contains (9m + 3)/2 classes when m is odd 
and (9m + 6)/2 classes when m is even. Most classes consist of two members, i.e., 
some particular element and its inverse. Exceptions to this rule for odd m are: the 
identity, which is in a class by itself, and all 9m elements with u’ = 1 in Eq. ( 8 ). which 
are in the same class. Exceptions for even m are: the identity and Cjmj2, each of which 
is in a class by itself, and the 9m elements with UJ = 1, which are distributed equally 
into two classes, one class for even values of (3k + u + u) and one for odd values of 
(3k + 24 + v) in Eq. (8). 

Experimental values for p and values for the rational numbers p/m approximately 
equal to p are given in Table IV for four molecules. It can be seen that the extended 
group Gi?’ for H$Z-CD3 is just a triple group G”’ I* of Gi8. This simple example arises 
essentially because the CH and CD bond lengths are equal, while the ratio of the H 
and D masses is 4. It will be described in more detail after the general group-theoretical 
discussion below. 

We note in passing that the values of p given in Table IV are actually the effective 
values indicated by /? in Eq. (Sa) of Ref. ( 13). The accuracy for H3C-CF3 (2) is much 
lower than that for the other molecules. In this case, the accuracy was limited by the 
nuclear hyperfine contributions to the energy splittings. With a detailed understanding 
of the hyperfine Hamiltonian, it should be possible to extract information on the 
hyperfine constants as well as to reduce substantially the error in p. For the other 
molecules, b was determined entirely from anticrossings which are insensitive to the 
hyperfine contribution to the energy splittings. In these cases, the uncertainty in p 
= ItoP/( ItoP + If,,,,) is determi ne primarily by the difference (7, - p) produced d 
by higher order internal rotation effects (13). In HXC-CDX, this difference is 
-0.03% (7, 8). 

C. Character Tables and Symmetry Species Labels 

Tables V(a) and V(b) give the character tables for Cl:’ for odd and even values 
of m, respectively. These character tables take relatively simple forms and can thus 
probably be derived in a relatively simple fashion. In the present work, however, they 
were derived rather more laboriously by trial and error generation of representations 
using basis functions of the form PzKx, e’i.‘a’m, and suitable products thereof. 

When m is odd (Table V(a)), there are two nondegenerate representations A I and 

TABLE IV 

Some Values of p/m Corresponding to Experimentally Determined Values of p 

Molecule= H3C-CF3 H3C-Sill3 H3C-SiF3 H3C-CD3 

Pb 0.0345(3.54) 0.3518127(0.001%) 0.02546055(0.002%) 0.3339792(0.001%) 

p/mC 1130 (3.4%) 13/37 (0.13%) 71275 (0.02%) l/3 (0.19%) 

aThe p values for these molecules are taken from references (2), (5). (5) and (u), respectively, 
and actually correspond to the effective values i; defined in Ref. (2). 

bN umbers in parentheses represent the experimental uncertainty in percent. 
CNumbers in parentheses represent the difference between p and p/m in percent. 
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AZ: which are also single-valued representations of G18. There appear at first to be 
(9m + 3)/2 doubly degenerate representations E,YT, since the first subscript s runs 
from 0 to (3m - 1)/2 and the second subscript T runs from 0 to 2, but it turns 
out that EoO = Al + A2 and ED1 = Eo2, so that in fact there are only (9~72 - I)/2 
doubly degenerate representations. The single-valued representations of Gi8 among 
the two-dimensional representations of Gi:’ are EOl = El, E,, = I&, Em2 = Ex7 and 
E = E4, where the symbols after the equal signs correspond to Bunker’s notation 
(17) as reproduced here in Table II. 

When m is even (Table V(b)), there are four nondegenerate representations, Ai, 
AZ, B, , and B2, where the first two of these are single-valued representations of G,s. 
There appear at first to be (9m + 6)/2 doubly degenerate representations, since s runs 
from 0 to 3m/2 and r runs from 0 to 2, but EOO = AI + AZ, Ex~,I.o = BI + Bz, Eo, 
= Ea2, and E3ml2,1 = E3m/2,2. so that there are actually only (9m - 2)/2 E species. 
The single-valued E representations are as given in the preceding paragraph. 

The direct product of two E species (including E,,o or E3m,2,0) is quite easy to obtain 
by inspection, since it can be shown from the character tables that 

Es7 X E.sf,r = -Ls~.+~ + -L:,-.I. (10) 

If the subscripts on the right of Eq. ( 10) fall outside of the ranges specified above, 
they can be brought back into those ranges by noting from character Tables V(a) and 
V(b) that 

Es,, = E-s,-. = -f-&3 = Esi3m,r. (11) 

The multiplication scheme of Eq. ( 10) can be visualized pictorially by a slight extension 
of the circle diagrams used to visualize various aspects of the C,, groups (20-22). For 
the Giy’ group, it is convenient to imagine three circles, labeled by 7 = 0, 1, and 2, 
mod 3, respectively. The species E,, is then represented by the point(s) at f~( 27r/ 
3m) radians on the T circle. The multiplication of Eq. ( 10) then indicates that the 
direct product of a point at s(2a/3m) radians on the T circle with a point at ~‘(2x1 
3m) radians on the T’ circle is given by a point at (s + s’)( 2~/3m) radians on the (T 
+ T’) circle and a point at (s - s’)( 2??/3m) radians on the (T - 7’) circle. 

As mentioned in Ref. (12), this pictorial representation of symmetry species by 
angular positions on a circle strongly suggests that the arbitrariness inherent in the 
choice of a particular rational number p/m as an approximation for p could be elim- 
inated by working instead with some sort of continuous group. In the present formalism, 
for example, the symmetry species EPl for (J,, JY) given in Table VII below corresponds 
to an angle of p( 2r/3m) on the circle. Since p/m = p, this symmetry species would 
correspond to an angle of 27rp/ 3 in the continuous group formalism. The appropriate 
continuous groups almost certainly exist in the mathematical literature, but they have 
not yet been searched for by the present authors. 

D. Standard Forms for the Representation Matrices 

Before using group theory to write down wavefunctions and operators of definite 
symmetry species, it is convenient to go beyond the information given in character 
Tables V ( a) and V ( b ) and to choose standard forms for the various two-dimensional 
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irreducible representation matrices. If we label the two functions spanning a given 
representation E,, as I E,,,) and ) EST_), or equivalently as I E,,) and ) E_-S,_7), where 
s and T are both positive, then we shall require that 

when s # 0, or we shall require that 

for the one doubly degenerate species with s = 0. We shall further require that 

(12) 

(13) 

(14) 

for all degenerate species. Equations ( 12)-( 14) specify completely the form of all 
representation matrices. 

E. Trarwfiwmation Properties qf Basis Set Wavefunctions 

Transformation properties of the rotational wavefunctions 1 KJM) are easily de- 
termined as in Ref. (12) from the Eulerian angle transformations given in Table III: 

I‘MJM), I-KJM)l = &,,,mm. (15) 
Transformation properties of trigonometric functions of the torsional angle (Y can 

also easily be determined from Table III: 

l?[cos(cxs/m), sin(as/wt)] = I’[e”“““] = E,(,. (16) 

From a treatment very similar to that leading to Eqs. (22)-( 24) of Ref. ( 12) we find 
for the ground torsional state in the high-barrier limit (i.e., in the limit of nearest- 
neighbor tunneling only) that torsional wavefunctions of species Es0 correspond to 
internal rotation splitting energies of 

2Xlcos(2as/3m). (17) 

where X1 is the nearest-neighbor tunneling matrix element. 
The torsional wavefunctions used in Refs. (l-8, 13) can be written (16) 

MC,K,C = era(n-plOLJ,,K,,, (18) 

where 

u LgC,n = 5 A$+ae3’ka. (19) 
kzmw 

Here u specifies the number of torsional quanta excited and CT = 0, + 1, - 1 labels the 
torsional sublevel. Except when K = CT = 0, the functions [ UD,K,U, UL’,-K,-_] transform 
as[A,+A2].FortheK=a=Ocase,UU,K.o- = U,,_+ d, and there is only one function, 
which transforms as A, for even v and as A? for odd u. Furthermore, except for K = u 
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= 0, [eiiLY(U--PK)] transforms as ECCm_Kp),O. For K = 0 = 0, there is only one such 
function, which transforms as A, . It follows then that, except for K = CJ = 0, [ 1!4~.~,~, 
Mo,_K,_a] have the same transformation properties as [c?~~(~-~~)]. For K = u = 0, the 
same relationship holds, provided z) is even; in particular, it holds for the ground 
torsional state. For K = CT = 0 and v odd, the MU,O,O transform as the U,,Q,,. The 
transformation properties of the torsional functions can thus be understood by con- 
sidering only the exponential factors in Eq. ( 18 ), provided one makes proper allowance 
for the case with K = cr = 0 and v odd. From this discussion and Eqs. ( 16) and ( I7), 
it follows that s/m = (CT - Kp/m) = ( CT - Kp), and T = 0 for the torsional wavefunctions 
in Eqs. ( 18) and ( 19), where s is to be kept in the desired range by using Eq. ( 11). 

The symmetry species of nuclear-spin functions characterized by laboratory-fixed 
projections of the angular momenta can also be determined easily by direct application 
of the permutation-inversion operations. If we use the notation I Ml, A42, ~343) for 
nuclei in the top and 1 M4, M,, M6) for nuclei in the frame, then for nuclei of spin 
1 located in the top we find the symmetry species 

r[ 1 +++)I = Al 

r{ [ I-++) + ei2*i’3 I+-+) + es2Ti’3 1 ++-)]/v5> = Em,, (20) 

where I-++) is a shorthand notation for I M, = -4, n/l, = +i, A43 = +i), etc., and 
where upper and lower sign choices correspond to wavefunctions transforming like 
I Em,,) in Eqs. ( 12)-( 14). TheAi and E functions correspond to a total nuclear spin 

Z in the top of Zt = 5 and Zt = f, respectively. Other functions belonging to the same 
total spin Zt in the top and same symmetry species can be generated (23) using the 
ladder operator (Zr + 12 + Z31X - i(Z, + Z, + Z3)r. 

Similarly, for nuclei of spin $ located in the frame, the species corresponding to 
the functions in Eqs. (20) are Ai and Eel ( I I$,,,)), respectively. The Ai and E species 
correspond to a total nuclear spin in the frame of Zf = 3 and Zr = 1, and the ladder 
operator (Z, + Z, + Z6)X - i(Z4 + Z, + Zh)y can be used to generate other functions 
with the same total Zr and same symmetry species. For nuclei of spin 1 located in the 
frame, we find 

r[ I +++)I = A1 

I’([lO++) + e’2”“31+0+) + eF2”i’31++O)]/tij = E,,, 

r{a[ I-++> + ef2rij3 I+-+> + e’2ri/3 1 ++-)]/ti 

+ b[I+OO) -IT e+2*i’3(O+O) f eT2~i’3~OO+)]/V3~ = Eel 

r(Cp++) + I+-+> + I++-)]/ti + d[j+oo) + lo+o) + Ioo+)j/V?) = A, 
r([lo+-) - lo-+) + I-o+) - I-+0) + 1+-o) - j+o-)I&) =A~, (21) 

where IO+-)inEqs.(21)isashorthandnotationfor ]M4=0,M5=+l,M6=-I), 
etc., and upper and lower sign choices correspond to wavefunctions transforming like 
( EolT). For suitable choices of a, 6, c, and d (23), the functions above correspond 

indecreasingorderto ]Zf,Mf)= ]3,3), ]2,2), ]I, l), ]I, l),and ]O,O),respectively. 
The ladder operator (Z, + Z5 + Z,)X - i(Z4 + I5 + Z~lh)~ can again be used to generate 
other functions with the same total Zr and symmetry species. Note that for nuclei of 
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spin 1, there exist functions with the same symmetry species, but with different values 
of Zr, i.e., I? = Eo, with Zr = 1 or 2 and P = A, with Zr = 1 or 3. Thus, Zf will not, in 
general, be a good quantum number, and the actual form of the spin functions will 
depend on the magnitude of the nuclear hyperfine interactions. 

The 2Z+ 1 multiplicities of the nuclear-spin wavefunctions, together with the sym- 
metry species multiplication properties and the fact that Pauli-allowed overall wave- 
functions belong to either the A, or the AZ species of Grg (regardless of the value of 
the nuclear spin for the individual nuclei), can be used to obtain statistical weights 
for the overall torsion-rotation levels. For molecules like H3C-SiH3 these are given 
in Table B-4 of Ref. (II): A,( 16), A*( 16), Eol( 16), E,,( 16), Em2(8), and E,,(8). 
For H3C-CD3, the corresponding statistical weights are: A,(44), A2(44), Eol(64), 

E31(44), E32(32), and E30(32). 

F. Simple Example: H3C-CD3 

We close this section by examining briefly as an example the triple group Gii’ 
formalism for 1 , 1, I-trideuteroethane. Table VI gives the full character table for Gii’. 

For this group, p = 1 and m = 3, so that symmetry species of the symmetric-top 
rotational functions I KJM) for even J and for K values from 0 to 9 are: A,, El,, Ez2, 
E33~E30rE44~E41,E55~E4,,E66~E30,E77~E22,Ess~E,,,andE99~A,+AZ, 
respectively. For odd J, the K = 0 species is AZ. For K > 9, use the species given for 
the same K mod 9. 

Symmetry species for the torsional components of H3C-CD, split by internal rotation 
tunneling in the ground torsional state and also the correct linear combinations of the 
wavefunctions localized in individual wells in the threefold extended (m = 3) nine- 
well formalism can be found in Fig. 4 of Ref. (12). (The species E, there corresponds 
to Era here.) Relative energies for these components, under the approximation that 
only nearest-neighbor tunneling between wells is taken into account (i.e., only X1 # 0 
in Fig. 4 of Ref. (12)), are shown in Fig. 2 here, using a convenient geometrical 
construction (20). 

Torsion-rotation symmetry species are also shown in Fig. 2. Note, however, that 
the subscript 7 on the representations Es, for molecules like H3C-CD3 does not play 
exactly the same role as the quantity c does for methyl top rotations about asymmetric 
rotor frames (essentially because the integers u = 0, +I are sufficient to characterize 
all representations of the cyclic group of order three, but are not sufficient to characterize 
all representations of the direct product of two cyclic groups of order three). Nev- 
ertheless, as indicated in the discussion above, a knowledge of K and c permits one 
to obtain K, s, and T, and vice versa. 

When the high-barrier limit is relaxed somewhat, next-nearest, next-next-nearest 
neighbor tunnelings, etc., become important, and several terms are required in the 
energy expression sum of Eq. (24) of Ref. ( 12) or Eq. ( 16) of Ref. (13). We note in 
passing that even in this intermediate barrier case, many of the degeneracies exhibited 
in adjacent K # 0 mod 3 energy stacks of Fig. 2 will persist. 

For some additional discussion and an excellent experimental illustration of these 
matters, the reader is referred to a recent Raman study of torsional overtones in 
CH3CD3 (24). 
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FIG. 2. (a) Torsional energy level splittings and torsional symmetry species ‘I for the ninefold well of 
G ii’, as appropriate for HjC-CD3. The energy scale is arbitrary. The ratios of the splittings apply to a 
torsional level deep in a high-barrier well. but even in the intermediate-barrier case, many of the degeneracies 
exhibited in adjacent K f 0 mod 3 energy stacks will persist. The symmetry species correspond to even J 
and even torsional quantum number 2). The species ‘T = E,, here correspond to wavefunctions of species 
E, in Fig. 4 of Ref. (12). (b) Torsional splittings as a function of the projection K of the total angular 
momentum along the symmetric-top axis (on the same scale as (a)). Note that permissible torsion-rotation 
symmetry species ‘IT in Cl:’ all correspond to single-valued representations of Gls in Table II. 

3. SPIN-ROTATION AND SPIN-SPIN CONTRIBUTIONS TO 
THE HYPERFINE HAMILTONIAN 

A. Symmetry Species qf Laboratory-Fixed Vector Components 

The symmetry species of the laboratory-fixed components of many vector operators, 
including the total electric dipole moment p of the molecule, the total angular mo- 
mentum J of the molecule exclusive of nuclear spin, and the nuclear-spin operators 
Ii for each atom i, do not depend on which component (i.e., X, Y, or Z) is considered, 
and this fact is reflected in the shorthand notation below. Particles 1, 2, and 3 are 
taken to belong to the top (sub- or superscript t); and particles 4, 5, and 6 to the 
frame (sub- or superscript f). Since the permutation-inversion operations can be applied 
directly to the laboratory-fixed components of the various operators, it is easy to show 
that 

U(/.h,~,or~l = A2 

I’[(J),,~,orzl = A, 

I‘[(Il + I2 + I3)x.~,orzl = AI 

w14 + Is f I6)X,y,orZ] = Al 

r[(I, + e*2a’i312 + e32ni’313)X,Y,orz] = Em1 

r[(14 + ei2*i’315 + eS2a”316)X,y,orZ] = Eo,, (22) 

where the upper and lower signs in the last of Eqs. (22) correspond to operators which 
transform like the functions I E,I-c) and 1 EoL~), respectively, in Eqs. ( 12)-( 14). 
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B. Symmetry Species of Molecule-, Top-, and Frame-Fixed Vector Component5 

The easiest way to derive the transformation properties of vector operator com- 
ponents taken along axes other than the laboratory-fixed XYZ axes is to consider the 
transformation properties of the appropriate direction cosine matrix elements, since 
the transformation properties of the latter can be determined easily by direct substi- 
tution from the transformations of Eqs. (6) and Table III. If V is used to represent 
an arbitrary vector, and the subscripts L, M, t, and fare used to indicate laboratory, 
molecule, top, and frame components, respectively, then inspection of Eqs. ( 1) and 
(2) leads to the following transformation equations: 

[VIM = s+'(x, 0, @)'[v]L 

[VI, = s+l(x - pa + a, 0, I$)* [VI, 

[VI, = s+‘tx - Pa, 0, dJ)-[VI,. (23) 

Symmetry species of vector components determined from the transformation properties 
of Eqs. (23) are given in Table VII. It is interesting to note that when the x, y com- 
ponents of these vector operators are taken in the top-fixed or frame-fixed axis system, 
the symmetry species are all single-valued representations of G18, but when the x, y 
components are taken in the molecule-fixed system, the symmetry species can be 
multiple-valued representations of G r8. This fact agrees with the expectation that in 
a principal-axis-method treatment, where only top- and frame-fixed coordinate systems 
occur, the use of the extended-group formalism is unnecessary. (One should, however, 
take care not to identify all aspects of a PAM treatment with the current use of top- 

TABLE VII 

Symmetry Species of Various Vector Operator Components 

operatora J.ABb MOLECULEC topd fram@ 

kY 

“7. 

J x,Y and (Il+12+13)x,yf 

J, and (Il+12+13)zf 

(I1 + &ni/3I2 + .i2rri/3I 
3 X,Y 
j 

cIl + &ni/3I2 + .i24313jz 

(I4 + e+27ri/315 + e32ni131 
6 X,Y 
j 

t14 + ,=*2ni/315 + .32ni/3I 
67. 
j 

a2 

4.2 

24 

Al 

2%1 

Em1 

2EOl 

Eel 

EPl 

Al 

EPl 

A2 

%+p,z + Em-p,0 

%l 

EPO + Ep2 

EOl 

%l 

Al 

%a1 

A2 

Al + A2 + Em1 

Em1 

%I0 + %2 

EOl 

EOl 

Al 

EOl 

A2 

%I0 + %2 

Em1 

Al + A2 + Eel 

EOl 

% is shorthand notation for b,p etc. 
bl%ratorY-fixed components, from E&. (22). 
CMolecule-fixed components, from the first of Eqs. (23). 
dTop-fixed components, from the second of Eqs. (23). 
eFrame-fixed components, from the third of Bqs. (23). 
f(I4+IS+I&, transforms like (Il+12+13)x,y and (I~+Is+I~)z transforms like (Il+12+13)z. 
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TABLE VIII 

Tansformation Properties under the Generating Operationsa for G IT’ of Vector Operators with 
Componentsb Taken in Various Axis Systems’ 

Ct Cf cl 

e -2nid3 (ILt)q.p 

e -2ni(qm-Pp)/3m (IMtjqGB 

e -2ni(q-B)/3 (Itt)q.B 

e -2nW (Iftjq.@ 
-------______ 

+(ILf),$ 

e+2niBp/3m (I,f),.@ 

.+2niB/3 (Itf)q.P 

+(Iff)q;B 

+(I,9q;p 
e -Zni(Bm-Bp)/3m (I,t)q.B 

+(Itt)q;B 

e -2nW3 (Ift)q.B 
-----~-~------- 

e -2niq/3 (ILf)q.P 

e -2ni(qm+8m-Bp)l3m (IMf)q.P 

e -2niq/3 (I,f),.@ 

e -2ni(q+@)/3 (Iffjq.@ 

+(ILt)_q;@ 

‘(IJ)_q;_@ 

-(Ittkq;_~ 

-(Iftkq;_~ 
------- 

+(ILf)_q;8 

-Q.ff)_q;_B 

-(Itf)_q;_B 

-(Iff)_q;_B 

=The generating operations Ct. Cf and o are defined in Table III. 
bTbe subscripts q and B are defined in Eqs. (24-25). 
%lecule-fixed (M), top-fixed ct.) and frame-fixed (f) vector components are 
defined in terms of the laboratory-fixed (L) components in Eqs. (23). 

and frame-fixed axis systems. While the axis systems in a PAM treatment are the same 
as the top- and frame-fixed systems used here, the operators in a PAM treatment do 
not have precisely the same definitions as those in an IAM treatment.) 

For the purpose of constructing contributions to the hyperfine Hamiltonian of def- 
inite symmetry species, we shall make repeated use of a convenient but slightly cum- 
bersome notation similar to that used for a hyperfine treatment in 2 E electronic states 
of CjU molecules (25). Three linearly independent combinations (specified by a sub- 
script q = 0, + 1) of the individual nuclear-spin operators in the top or frame (specified 
by a superscript t or f) are defined by 

(I’), c I, + ,+2~/31~ + e-2*d313 

(If), - 14 + e+2”iq/315 + e-2*lq/3~6. (24) 

Vector components are then specified by a subscript L, M, t, or f, which indicates the 
axis system, together with a subscript 0, 

(IfL,M,t.f)q;ii = [u’),lL3 

(1 &.t,f,,;, = [(I’L?l&% (25) 

where 0 = X, Y, or Z for laboratory-fixed vector components (L), and ,6 = 0, f 1 
(i.e., z or x + iy) for molecule-fixed (M ), top-fixed (t), or frame-fixed ( f ) vector 
components. Transformation properties of various vector operators in the notation 
of Eqs. (25 ) are given in Table VIII. 
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C. The Nuclear-Spin-Overall-Rotation Operator Hsl 

In a normal point group treatment we would at this point seek, as possible symmetry 
allowed contributions to El,,, all totally symmetric products of the rotational and 
nuclear spin operators which are linear in both the components of J and the com- 
ponents of the Ii. In the present treatment, we seek instead all bilinear products, which 
can be made totally symmetric by multiplication with an appropriate,function of the 
internal rotation angle CL Since the trigonometric functions of Q! ail belong to one of 
the species &, (i.e., all have 7 = 0)) we seek products linear in J and in the components 
of the Ii which also belong to the species E,o. Bilinear products of J and 1, of species 
A, can be used with constant coefficients as terms in H,,.. Products of species A2 can 
be used after multiplication by sin 301. Bilinear products of J and Ii of species ErO can 
be converted to the species EOO (i.e., to A1 + A*) by appropriate multiplication with 
cos( ra jm) and sin( rcu/ m), and thus products of species ET0 give rise to two terms 
in Hrs. (Note that the prescription in this paragraph is essentially a procedure for 
counting the number of different bilinear products of J and the I, which can be used 
in H,,, and is not a procedure for counting the number of all possible terms in H,,, 
since, for example, any Al term in H,, can be used to generate an infinite number of 
others by multiplication with cos 3n 01 for arbitrary integer values of n . > 

There is another question which arises in this counting procedure, namely the ques- 
tion of which axis system the vector components should be taken in. In fact, as we 
shall see in the next three paragraphs, it does not actually matter; the apparent form 
of the operators will change in the various descriptions, but the number of allowed 
bilinear products of J and the Ii which can be used in H,, will not. 

Consider first an H,, operator constructed entirely from molecule-fixed vector com- 
ponents. We see from Table VII that I’(J) = A2 + EPl and that I’( 11,2, _, 6) = 2A2 
+ 2Epl plus the six symmetry species in the last four rows of the “MOLECULE” 
column. I’(J) X I‘( Ii,z, _, 6) then contains the following species with 7 = 0: 2A 1 + 2 EoO 
+ 2 Epo + 2 E,,,o + E2,,,0 + &,+2p,o. The species A, is contained in this set four times, 
and the corresponding four operators can be used directly in H,,; i.e., they can be 
used with constant coefficients. By multiplication with suitable functions of OL, 14 
other A, terms can be constructed, so that the total number of different terms for H,, 
is 18 (where two terms are not considered to be different if they can be written in the 
form g(ol)*f(a, I,, J) and h(a)-f(a, Ii, J)). 

Consider next an H,, operator constructed entirely from top-fixed vector compo- 
nents. Again from Table VII, P(J) = A2 + E,, and I’( 11,2, ._ 6) = 2A2 + 2 EmI plus 
the seven species in the last four rows of the “top” column. P(J) X 1’(11,>, _, 6) then 
contains the following species with T = 0: 2Ai + 5 Em + 3 Emo. The seven A, terms 
can be used directly in H,,, and 11 other A I terms can be constructed by multiplication 
with suitable functions of o(, so that a total of 18 terms for H,, is again obtained. 

The same total of 18 is obtained if, as another example, we use molecule-fixed 
components for J, top-fixed components for the Ii when i = 1, 2, 3, and frame-fixed 
components for the Ii when i = 4, 5, 6. 

Even though the total number of allowed operators in H,, does not depend on the 
axis system chosen, some choices are more convenient than others for a given purpose. 
Thus, to compare H,, for H3C-SiH3 with H,, for the protons in PH3, for example, it 
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would be convenient to use top-fixed components for J and the I; when i = 1, 2, 3 
and frame-fixed components for J and the I, when i = 4, 5, 6. H,, for H3C-SiH3 will 
then separate into two parts 

Hs, = H:, + H,f, (26) 

one part for the protons in the top, the other for the protons in the frame, and each 
of these parts should individually have the same form as H,, for the protons in PH3. 
On the other hand, when taking matrix elements in an IAM basis set, it would be 
convenient to use molecule-fixed components for all vector operators, since then the 
conversion of the nuclear-spin angular momenta to laboratory-fixed components in- 
volves direction cosine matrix elements which are functions only of the rotational 
angles. Table IX presents the symmetry-allowed contributions to H,, in both of the 
forms described in this paragraph. 

The five a-independent terms for either Hi, or H,‘, which can be obtained by setting 
n = 0 on the right-hand side of Table IX correspond to the five spin-rotation operators 
allowed for the protons in a C,, molecule like PH3 (27). In practice, consideration is 
usually limited to the three such operators having selection rules AK = 0, +2 (i.e., to 
the operators in the first, second, and fifth rows of either H’,, or H,f,) by using a 
diagonal spin-rotation coupling tensor (27, 28). The local environment of a given H 
atom in PH3 actually has only a plane of symmetry, however, so that for an H atom 
lying in the xz plane, for example, the two additional products JsVZZ and J=J,, which 
have selection rules AK = f 1, are also permitted by symmetry considerations to occur 
in H,,. Spin-rotation (and spin-spin) hyperfine matrix elements off-diagonal in K are 
described in some detail in the Appendix of Ref. (3). 

The spin-rotation operators in Table IX can be converted to a form convenient 
for AJ = 0 matrix elements in a basis set containing nuclear-spin functions charac- 
terized by laboratory-fixed projection quantum numbers by using the operator 
equivalent 

(IM)&JM)~~ + [(IL)~*(JL)I[(JM)~(JM)B~/J(J+ 111. (27) 

For A J = k 1 matrix elements, more complicated ladder operator (23) or spherical 
tensor (29-32) techniques prove convenient. The procedure developed by Bowater 
et al. (30)) in which spherical tensor expressions are applied only after the molecule- 
fixed components of all vector operators have been converted to laboratory-fixed com- 
ponents multiplied by the direction cosine matrix (as in Eqs. (23) above), is to be 
recommended here also (after modification to include the torsional angle 01), as an 
excellent means for avoiding the introduction of phase-factor and sign-convention 
errors when applying standard vector coupling and spherical tensor techniques to 
angular momenta obeying commutation relations with the anomalous sign of i (26). 
In particular, (IM ) 4 and JM here represent three pairs (31, 32) of analogs (q = 0, + 1) 
of S and N in Eq. (9) of Ref. (30)) while ( IL)q and JL represent three pairs of analogs 
of S and N in Eq. (30) there. 

D. The Nuclear-Spin-Internal-Rotation Operator H,,, 

The symmetry species I of the torsional momentum pa is the same in the mole- 
cule-, top-, and frame-fixed axis systems and is given by 
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m,) = A2. (28) 

Because pal transforms like J,, nuclear-spin-internal-rotation interaction operators 
can be constructed from the nuclear-spin-overall-rotation operators in Table IX by 
replacing (&);, ( J,)z, or (Jf)= by pa, and then making the resulting term Hermitian 

([P,, eikal + 0). 
In the intermediate- and high-barrier cases, expectation values of the form 

(V&T ~~1 vKa) are rather small for low v, i.e., of the order of 0.001, 0.03, and 0.5 
for u = 0, 1, and 2 in the molecules of interest in this paper, so that at least for v = 0, 
these nuclear-spin-internal-rotation interaction terms can probably safely be ignored. 

The nuclear-spin-internal-rotation interaction terms provide a convenient illustra- 
tion of the advantages of the IAM system for relatively high-barrier problems. Consider, 
for example, spin-rotation and spin-internal-rotation operators of the following form 
for nuclei in the top (t): 

and 

= ~~(~tM)O:z[(~ahAM + PJZI + ~mlh;zJz 

= ~~(&h:z(~ahAM + (3 + Pm(G4h:zJz, (30) 

where ( I’)o = ( I1 + I2 + 13), and where the subscripts IAM and PAM on pa refer to 
operators as they are conventionally defined in these two systems ( 16). From Eqs. 
(29) and (30) we conclude that 

c:+ (?{-t pF{) 

cp + ?f. (31) 

However, expectation values of the IAM and PAM operators aa are related by the 
equation 

((&.4M) = ((PJlAM) + P(J,). (32) 

Since ((PJ~AM) --) 0 as I’, + cc, we see that ((P&AM) + pK as I’, + cc. Thus, 
there is no clear separation of spin-rotation and spin-internal-rotation effects in the 
PAM system when L’s + cc, in contrast to the IAM system, where a clear separation 
does occur. 

E. The Nuclear-Spin-Nuclear-Spin Operator H,, 

Symmetry-allowed terms in H,, can also be constructed using the transformation 
properties indicated in Table VIII. It is convenient to divide H,, into three parts, 

H,, = H’,, + H,‘, + Hlf > (33) 

one part for interactions wholly within the top, one for interactions wholly within the 
frame, and one for interactions between the top and the frame nuclei. Tables X, XI, 
and XII give the symmetry-allowed operators occurring in these three parts of H,, . If, 
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as for H,, in Section 3C, operators of the form g( cu) +f( a, I;, I/) and h(a) .f( (Y, I,, I,) 
are not counted separately, we see that there are 15 different operators for Hi, given 
in Table X, 15 for H,‘, given in Table XI, and 27 different operators for HaI given in 
Table XII. As in Ref. (25), it is convenient to try to reduce the large number of 
adjustable parameters associated with a general expression containing these operators 
by considering only that linear combination occurring in the classical dipole-dipole 
(spin-spin) interaction energy expression. 

Consider first the classical expression Wi, describing nuclear spin-spin interaction 
wholly within the top. If top-fixed (t) vector components are used, this operator takes 
the form 

IV:, = g:pkr,3[11. 12 - 3r,2(11- r,2)(r,2* 12) + 12'13 - 3~;~(12. r23Nr23.13) 

+ 13.1, - 3r:2(13e r31)(r31e b)h, (34) 

where g, is the nuclear g-factor for the protons in the top, pN is the nuclear magneton, 
r, is the distance between protons in the top, ri, = ri - r, are vectors from atom j to 
atom i, and the final subscript t indicates components taken in the top-fixed axis 
system. 

Using standard procedures it is possible to express Eq. (34) in a relatively compact 
spherical tensor notation (29-32)) 

wL = -3gfPiirF5 C' C (-1)"[Tr~~r~j(2, -SJT/,/jt2, +S)lt, (35) 
I/ s 

where C’ indicates that j takes the values 2, 3, 1 when i takes the values 1, 2, 3, 
respectively. The index s takes the usual values *2, f 1, 0. There are a variety of sign 
conventions in the literature for spherical tensors. We follow Edmonds (29) and relate 
spherical tensor components to Cartesian tensor components for two vector operators 
ru and rh by the equations 

T&2, +2) = +( l/2)(x0 + iYa)(xb -t &b) 

T,,J,(~, +l) = T( 1 /2)[(xa f iy,h + z,(xt, * @hII 

T&2, 0) = +6-1’2(3z,zb - roe rh). (36) 

Top-fixed components are used in Eq. (34) because the r,, for i, j = 1, 2, 3 are all 
constants in the top-fixed axis system, with values determinable from Table I: 

r12/Tt = +(ti/2)i + (1/2)j 

r23/rt = -.i 

r3,/rt = -(V5/2)i + (1/2)j. (37) 

Components of the tensors TruriJ occurring in Eq. (35) are therefore also constants, 

T,,,,,(2, &2), = -( 1 /2)uk(2-r-‘)rf 

Tr;,rJZ fl It = 0 

Tri,,,,(2, 0), = -6p”2rf, (38) 
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where we define a quantity o, 

+2ar/3 w=e , (39) 

which reflects the threefold symmetry in the molecule and which we shall make ex- 
tensive use of in the derivations below. 

We now convert the nuclear-spin tensor TIilj in Eq. (35) from operators referring 
to the spins Ii and Ij of individual nuclei to the more “symmetrized” operators of Eqs. 
(24). The latter equations can be rewritten in terms of the quantity w defined above 
as 

(I’), = ti c u&l 
n 

(If), = fi 2 UqnIn+3 

cl,, = ( 1/v3)w+q(n-‘), (40) 

where the matrix U is unitary, and q and 12 both take on the values 1, 2, 3. Note that 
q = 1,2, 3 in Eqs. (40) corresponds to q = + 1, - 1,O mod 3, and the notation of Eqs. 
(40) is thus consistent with the notation q = +, -, 0 used in Eqs. (24) and Tables 
VIII-XII. Substituting Eqs. (38) and the inverse transformation of the first of Eqs. 
(40) into Eq. (35) leads to an expression of the form 

wis = -g&_&r;3 c {[3-i 2’0 -q(i-11-q’(j-l)-2+i+J](_1/2)Tqq,(2, f2) 

44 ’ ij 

+ [3-i C’w ~4(i-l)-_q’(j-l)](_l/~)Tqq,(2, 0) 

+ [3-l C’w ~4(i--1)-q’(~-1)+2-i-_j](_l/2)Tqq,(2, _2)),. (41) 

It can be seen that C $ in Eq. (4 1) is equivalent to C i with i = 1, 2, 3 and j = i + 1. 
Carrying out these operations yields 

Wt, = -g&.&;3 C { (8q+q)wq-‘(-1/2)Tqq(2, +2) 
44’ 

+ (fiq’,3-q)wq(-1/~)Tqq’(2, 0) + (~q’,4-q)wqf1(-1/2)Tqq~(2, -2)}t, (42) 

where q and q’ take on the values 1, 2, 3 and the F functions only require equality of 
their arguments module 3. Equations (36) and (42) show that the six operators in 
rows 6-8 of Table X are not present in the classical operator for spin-spin interaction 
within the top. (We note in passing that slightly different forms for Eq. (42) are 
obtained if we setj = i + 1, or i = j + 1, or use an average of the two. The Hamiltonians 
analogous to Eq. (34) corresponding to these three possibilities are all equal, however, 
so that no changes in the final results arise, as long as one consistent choice is main- 
tained. ) 

We next convert the nuclear-spin operators from top-fixed (t) components to lab- 
oratory-fixed (L) components, since nuclear-spin basis functions are normally chosen 
to be characterized by laboratory-fixed projection quantum numbers. It is convenient, 
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however, to pass from (t ) to (L) through the intermediate stage of molecule-fixed (M) 
components. Equations (23) indicate that the second-rank spherical tensor components 
defined in Eqs. (36) transform as follows, 

T(2, s)~ = e +isaPlme-r.y-(2, s)M 

T(2, s)r = e +isap’mT( 2, s)~, (43) 

so that conversion from top- or frame-fixed components to molecule-fixed components 
is relatively easy. 

It is convenient to change from molecule-fixed to laboratory-fixed Cartesian com- 
ponents of the nuclear-spin angular momentum operators in the products of interest 
using the relation 

(&4)y$3(&4)q’;p’ = 2 s~Bs~'B~(IL)4;B(zL)4';B', (44) 
B,B' 

where S@ represents the direction cosine matrix in the first of Eqs. (23 ) and is thus 
not a function of 01. Since we restrict our attention to AJ = 0 hyperfine interactions 
in this paper, we desire an operator equivalent for S gB S 13’8’ analogous to the operator 
equivalent (JL)B( JM)o/ J( J + 1) used for SOB in Eq. (27). Because the nuclear-spin 
operators occurring in the spin-spin interaction Hamiltonian can be written as com- 
ponents of a symmetric traceless tensor, it is sufficient to use an operator equivalent 
for AJ = 0 from Eq. (3) of Ref. (33): 

(~/~)[S~BSB’B~+S~B~SB’B] -(1/3)8ppd~~‘+ [6/J(Jf 1)(2J- 1)(2J+ 3)] 

x [(I /~)(JBJB~ + JwJB) - (~/~)~BB~J~I 

X [( 1/2)(JpJo, + Jo,Jfl) - ( 1/3)6,,,J2]. (45) 

For A J = f 1 and *2 matrix elements, more complicated ladder operator methods 
(23), or spherical tensor techniques (29-32) applied directly to Eq. (44)) prove con- 
venient. In the present case we apply the spherical tensor definitions of Eqs. (36) to 
Eq. (44) after substitution of Eq. (45) and obtain 

T&2, +2)M = [J:]M[3/J(J+ 1)(2J- 1)(2J+ 3)] 

X IC (-l)“T,,,(2, +s)T,,(2, -~)IL 

T,,f(2, fl)M = +[JkJz+ JzJ,lM[3/J(J+ 1)(2J- 1)(2J+ 3)] 

T,,,(2,0)~ = ti[J: - (l/3)J2]M[3/J(J+ 1)(2J- 1)(2J+ 3)] 

X [C (-1)“Tr,,(2, +3)7’,,,(2, -~)IL> (46) 

where T,,( 2, s)~ is a second-rank tensor constructed from laboratory-fixed components 
of the total angular momentum J according to Eqs. (36). 
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Substituting Eqs. (46 ) and the first of Eqs. (43 ) into Eq. (42 ) , summing over q and 
q’, and making use of the fact that T& 2, s) = T,J,( 2, s) for the nuclear-spin operators 
in Eqs. (40)) we obtain finally for the classical spin-spin interaction energy within 
the top 

w:, = g&&r;3[3/J(J+ 1)(2/- 1)(25+ 3)] 2 (-l)“T,,(2, +s)t 

X {( 1/2)[J:]Me+2i~pplme-2ia[T++(2, -sh_ - 7b_(2, -s)J 

+ [Jt - ( l/3)J21~[Too(2, -sh_ - T+-(2, -sILI 
+ ( 1 /2)[J2]Me-2’“‘“e+2’” ] T--(2, -s)L - To+(Z -Sk_1 > > (47) 

where the +, -, 0 subscripts on the nuclear-spin operators Tq4~ match those in Eqs. 
(24)) (25) and Tables VIII-XII, e.g., 

To-(29 2)1_ = (1/2)t(%)o;x + i(rth~)l [(Ib;x + i(lt)-;~l. (48) 

An analogous procedure can obviously be carried out for the classical spin-spin 
interaction energy WA within the frame, 

W,’ = g2fp&rT3[14. I5 - 3r;2(14* r45)(r45- Is) 

+ 15'16 - 3r72(15' r56)(156'16) + 16'14 - 3rf2(16' r64)(r64'14)lf, (49) 

except that here it is convenient to use frame-fixed (f) vector components so that the 
rti are again constants, 

r45/rf = +(Ih/2)i - (1/2)j 

r64/rf= -(b/2)i- (1/2)j, (50) 

where yf is now the proton-proton distance in the frame. The analog of Eq. (47) for 
W,’ becomes 

Wfr = g2f&rT3[3/J(J+ 1)(25- 1)(2J+ 3)] C (-l)‘T,,,(2, +s)L 

X (( 1/2)[J:]Me+2iap’plm [T--(2, -s)L- To+(L -s)LI 

+ [J: - ( 1/3)J21~[Too(2, -J)L- T+-(2, -s)LI 

+ ( 1/2)[J2]Me-2icrp’m I7-++(2, -s)L- To-(& -shl). (51) 
When the analog of Eq. (42) for W,‘, is written, using frame-fixed components for 
the nuclear-spin operators, it is seen that the six operators from rows 6-8 in Table XI 
do not occur in PI’,‘,. 

The classical energy expression WL: for nuclear-spin-spin interactions between the 
top and frame, 

+ 12'16 - 3r;:(I2'r26)(r26'16) + 13'15 - %?(13'r35)(r35' Is)] 
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+ gtg&r2[1, - I5 - 3rr52m - h5)(r15.15) 

+ 12% - 3G2(12. r24)(r24’14) f 13’16 - 3c_?(13’ r36)(r36’ I6)1 

+ g&fl*~~;b3[h ’ I6 - %?(I1 ’ h6)(rl6’ 16) 

+ 12.15 - 3r;i2(12.r25)(r25’15) + 13.14 - 3rr62(13’r34)(T34’14)1, (52) 

is considerably more complicated to treat than Wis or W,‘,, since there is no possible 
choice of coordinate system in which all proton-proton distances rr, remain constant. 
In what follows, we shall arbitrarily choose to examine lV:f in detail in a frame-fixed 
axis system. 

We first write the analog of Eq. (35) as 

wtt = -3&&& c (-1)” c ro5[L,,,(2> -s)T1,1,(2, +s)lf, (53) 
3 0 

where i = 1, 2, 3, j = 4, 5, 6, s = +2, +l, 0, and the final subscript f indicates 
components taken in the frame-fixed axis system. 

We consider next the proton-proton vectors rri. Since the first subscript i = 1, 2, 3 
is always chosen from the top, and the second j = 4, 5, 6 is always chosen from the 
frame, and since frame-fixed vector components are used, we can write 

[ri,lf = S-‘(a, 0, 0). [aPIt - [a,Olf, (54) 

where components of the vectors [a?] t and [a,“] f are given in Table I. Equation (54) 
leads immediately to various useful relations between the quantities rti. For the squares 
of the distances occurring in Eq. ( 53) we find 

r:4(a) = r&(a) = r&((Y) = (a?)’ + (a!)’ - 2(&)(&) - 2(a?,)(&)cos 0 

rT5(a!) = r&(m) = r&(a) = r&(01 - 2~/3) 

= (a?)’ + (a!)‘- Z(U~~)(U~J - 2(u~,)(u~,)cos(a - 2~/3) 

r:6((Y) = r&((Y) = &(o!) = &((Y + 27r/3) 

= (a?)’ + (a:)’ - ~(u~~)(u~,) - 2(u~,)(u~,)cos(ol + 2~/3). (55) 

For the tensors Trllr,, occurring in Eq. (53) we find 

T r,w(& s)f = u+%26r26(& s)f = W-JTr35r35(2, s)f 

T r,e,5(2, S)f = W+“T,2m(2, s)f = W-“Tr36r36(& S)f 

Tr16r16(& S)f = W+sTr25r25(2, df = ~pSTr34r34(2, s)f. (56) 

Substituting Eqs. (55) and (56) in Eq. (53) after using Eqs. (40), we arrive at the 
analog of Eq. (42). 
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where q, q’ = 1,2, 3, and the 6 function only requires equality of its arguments moduio 
3. Equation (57) differs slightly from Eq. (42) in that the components of the tensors 
Trg,lj have not yet been explicitly evaluated. Equations (36) and ( 57) show that all 
operators from Table XII are present in IV:;. 

The conversion from frame-fixed components to laboratory-fixed components for 
the nuclear-spin tensors Tqqf in Eq. (57) can be carried out using the second of Eqs. 
(43), and then Eqs. (46), to yield 

IV;: = -g,gr&[6/J(J+ 1)(2J- 1)(2J+ 3)] C (-l)se+“DP’m 

x T,,(2, +S)M C ~41,4-s[yl~Tr14r14(2, -s) + ws-*y;55 T’15r15(2> -s) 
44l 

+ uq-‘r;; T r16r16(& -S)lf z (-w%&, +d%(& -Y)iL, (58) 

where Eq. ( 58) is applicable only for A J = 0 matrix elements, and where the spherical 
tensors T,,( 2, s)~ involving the molecule-fixed components of the angular momentum 
are best evaluated after converting to normal ladder operators (using Eqs. (36)), to 
avoid difficulties arising from the anomalous sign of i in the commutation relations 
of the components of [J] M. 

The tensors Trlj,lj in Eq. (58) can be evaluated for j = 4, 5, 6 from Eqs. (36) and 

(54). 

T,,,,,j(2, +2) = (1/2)[e”“(a?,) - w’(‘-~)(Q!x)I~ 

= (l/2)] 
e 
t2iu( 

4, 
0 )2 _ 2w+(1-4) *i e "(a~,)(&)+ ~"(~~')(a~,)~] 

T,ij,ij(2, f 1) = +[e”“(u?‘,) - ~‘“~~‘(d,)l[(&) - (&>I 

T,Vfzlj(2, 0) = VG( 1/2)[(a?Z - dZ>” - ( 1/3)r?Jl> (59) 

where we have made use of the fact that z14 = zi5 = 216. Substitution of Eqs. (59) in 
Eq. (58) yields the final expression for IV’,{. 

4. APPLICATION TO EXPERIMENTAL DATA 

In this section we use the hyperfine interaction formalism derived in the previous 
section to discuss various observed and unobserved anticrossings from the molecular 
beam investigations. The avoided crossings of interest here fall into two categories 
which, in the language of Refs. (.5-8), are called “barrier” anticrossings when A 1 Kl 
= 0 and “hypertine” anticrossings when A I KI = 1 or 2. In both cases it is hyperfine 
matrix elements off-diagonal in the vibration-rotation-torsion symmetries of the 
wavefunctions that provide the coupling between the anticrossing levels. We first discuss 
the calculation of matrix elements in general and then discuss in some detail the 
CH3 SiH3 (5) and CH3 SiF3 (6) molecules, since they have been subjected to the most 
thorough experimental study. 

A. Matrix Elements of the Nuclear Spin-Spin Operators 

The wavefunctions in Table XIII are written in the high-field representation ap- 
propriate (3) to the anticrossing experiments. The levels are characterized by the 
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quantum numbers (J, K, u, mJ, It, M,, Zf, Mf) . A relatively strong electric field is 
applied in order to bring the levels involved to their avoided crossing. The wavefunc- 
tions in Table XIII do not belong to one of the ““I species A, or A2 allowed by the 
Pauli exclusion principle for the group Gls. In zero external field these A, and A1 
wavefunctions occur in nearly degenerate pairs, and each such pair is fully mixed by 
the strong Stark effect to generate a sum and difference function. It is these 5050 
mixtures which are listed in Table XIII. The levels with K = u = 0 are exceptions: in 
this case the symmetry is A, or AZ. 

A small magnetic field (-2 mT) is assumed for two reasons. First, it is possible 
(3) to have two distinct levels which are degenerate with respect to the Stark energy 
but which can be coupled by the nuclear hyperfine interactions. For these special cases, 
the representation in Table XIII breaks down in zero magnetic field. Fortunately, in 
almost all these cases the Zeeman energy lifts the degeneracy and simplifies the analysis. 
Second, the treatment of the avoided crossings generally assumes that the transitions 
occur within a series of separate two-level systems. In zero magnetic field, multilevel 
systems can arise, such as those in the Stark-hyperfine hybrids discussed in Ref. (3). 
In almost all of these special cases, the Zeeman energy reduces the multilevel systems 
to two-level problems and so simplifies the analysis. The Zeeman splitting is of par- 
ticular importance because the special cases which can arise when 1 KI = 1 mJI = 1 

TABLE XIII 

Complete Torsion-Rotation-Nuclear-Spin Wavefunctions for the States of H$-SiHj Shown in Fig. 2 of 
Ref. (5) and the States of H3C-SiF3 Shown in Fig. 2 of Ref. (6) 

IJ K 0 r rnJ> Itr>lr~;J,K,M~>l"tr;It,Mt>l"fr;If.Mf>C 

=In the notation of Fig. 2 and Table I of Ref. (5). Note that these wave 
functions in Ref. (2) do not contain nuclear spy" factors, and that r 
corresponds to the torsion-rotation symmetry species. 

bI" the notation of Fig. 2 and Table 2 of Ref. (6). Note that these wave 
functions in Ref. (6) do not contain nuclear spin factors, and that r 
corresponds to the torsion-rotation synnnetry species. 

CIn the notation of the present paper. The left superscripts t, r, nt and nf 
indicate IAN torsional and rotational functions, and laboratory-fixed nuclear 
spin functions for the top and frame nuclei, respectively. It and If 
represent the total spin angular momentum of the top and frame, respectively. 
Note that the .same nuclear spin functions use here are suitable for use with 
the torsion-rotation wavefunctions defined in Refs. (5) and (a). 
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have been studied experimentally. For the fields assumed here, the Zeeman energy is 
much smaller in magnitude than the Stark energy, so that the 50:50 A, + A2 mixtures 
in Table XIII still form an appropriate basis. 

Matrix elements of various operators in the basis set of Table XIII can conveniently 
be separated into a torsional factor, a rotational factor, and a nuclear-spin factor, 
which we now comment on in turn. 

The torsional factors were evaluated numerically, using a previously written com- 
puter program. The torsional wavefunctions used were obtained for each (u, K) pair 
by diagonalizing the zeroth-order Hamiltonian matrix (5) set up in the IAM free rotor 
basis (5). The non-totally-symmetric part of a given exponential function of cy in Eqs. 
(47 ), ( 5 I), and ( 58) is required to give nonzero matrix elements between torsional 
functions of different symmetry species. 

Because the molecules considered here all have relatively high barriers, it is also of 
interest to calculate the torsional factor algebraically, using the high-barrier torsional 
wavefunction results from Ref. (12), 

3m- I 

1 j&,~) = ( 3m)-‘/2 C Ci2ni(kf’/2)r/3m+k( a/m), (60) 
k=O 

where $k( a/m) is a torsional wavefunction localized in the kth minimum. These 
functions are like those shown in Fig. 4 of Ref. (12), except that for the present set 
of molecules, which have staggered equilibrium configurations, the minima occur at 
(m/m) = (k + 1/2)(2x/3m), rather than at k(2r/3m) as in that figure, and each 
function 1 Eroi-) has thus, for convenience, been multiplied by an extra phase factor 
e*7rir/3m. In the simplest approximation, one can (i) consider only nontunneling con- 
tributions to the torsional matrix element of a given operator (an approximation 
which may be expected to introduce fractional errors of the order of the tunneling 
splitting divided by the torsional frequency), and (ii) use a delta function for the 
ground state vibrational wave function localized in each minimum. If we use the high- 
barrier torsional functions of Eq. (60), and if further the delta function approximation 
is made, then the torsional integral can be obtained simply by evaluating the appropriate 
part of the integrand at one of the equilibrium configurations. For the molecular 
structures (13, 34) and barrier heights (5, 6) employed, values for a given matrix 
element evaluated by the two procedures differ by only a few percent. 

In the rotational factor, the reduced matrix element for T,,( 2)L can easily be de- 
termined (29) to be 

(JilT,,(2)I/J) = [(2J- 1)2J(2J+ 1)(2/+ 2)(2J+ 3)/24]“2. (61) 

For the nuclear-spin tensors, the reduced matrix elements can also be determined 
by standard procedures. The tensors Tqql( 2, s),_ (for s = -2, - 1, 0, + 1, +2 and fixed 
q, q’) occurring in Eq. (47) (i.e., in W$) are constructed from products of laboratory- 
fixed components of the vectors (IL), and (ItL)q’, and we find the following nonzero 
reduced matrix elements, 

(?4,; 3/21/To,,,(2)l(“‘A,; 3/2) = + (30)“2 

(“‘A,; 3/21jT,,,(2)/j”‘A1; 3/2) = -(30/4)“2 

(“‘Al; 3/21/T,,,(2)1(“tE,,,; l/2) = +(15)“2 
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(“9~ 3/2b”,,,(2) or T-+,o(2)llntE,n,~; l/2) = -(15/4J1’* 

(“tE,,i; l/2(1 T+,+(2) II “tA1, 3/2) = -( 15)“* 

(“%iG 1/211~cl,,(2) or T,,,(2))I”‘A,; 3/2) = -t( 15/4)“*. (62) 

Similarly, the tensors T,,/( 2, s),_ occurring in Eq. (5 1) for Wf, are constructed from 
products of components of (IL), and (IL),{, and we find nonzero reduced matrix 
elements given by Eqs. (62) with nt + nf and E,,, + Eels. 

The tensors T&2, Y)~ occurring in Eq. (58) for Wif are constructed from products 
of components of (It), and (I;),(. Since in the basis set of Table XIII, nuclear spins 
in the top are not coupled to nuclear spins in the frame, it is necessary to express the 
second-rank tensor operators T,,t( 2, +Y)~ in Eq. (58) in terms of first-rank tensors 
acting on either the spins in the top or the spins in the frame (see Eqs. (40)). Matrix 
elements of the tensor operators T,,( 2, Y),_ in Eq. (58) thus take the form (29) 

(V; &WI(“Y’; I;A4;IT,,(2, r)rl”‘I?; I,M,)I”fr; IfA!&) 

= C (1, n?, 1, Y - ml 1, 1, 2, ~)(ntr’; z;~; 1 r,( 1, m)Llntr; z,M,) 
M 

X ("'r'; z;M;I 7-J 1, r - WZ)~(“~~; ZfMf), (63) 

where the operator T4( 1, m) in the first matrix element on the right of Eq. (63) 
contains only nuclear-spin operators for atoms in the top and the operator T,)( 1, Y 
- m) in the second matrix element contains only spin operators for atoms in the 
frame. Phase factors for spherical tensors of rank 1 (29) can be defined by an analog 
of Eqs. (36), 

T,( 1, +l) = +( l/fi)(x + i_V) 

Tr( 1, 0) = Z. (64) 

Nonvanishing reduced matrix elements of the first-rank tensors required to evaluate 
Eq. (63) when operators and wavefunctions apply to the top are then as follows, 

("tr;zIIT,(i)l)"tr;z)= +[z(z+ i)(2z+ i)]l'2 

("'A,; 3/2117’,(l)jlntEm,F; l/2) = -ti 

(‘V+; 1/2117’,(1)11”tA,; 3/2) = +ti 

(“‘&,T; 1/211Ti(l)ll”‘E& l/2) = -fi. (65) 

Nonvanishing reduced matrix elements required when operators and wavefunctions 
apply to the frame are given by Eqs. (65) with nt --f nf and E,,,i& + Eo,, . 

Because of various phase conventions, reduced matrix elements defined in connec- 
tion with spherical tensors are often not Hermitian. Thus, since the spherical tensors 
defined in terms of r in Eqs. (36) and (64) satisfy Eq. (5.5.2) of Edmonds (29) when 
r is replaced by any of the operators considered in this paper, their reduced matrix 
elements in Eqs. (62) and (65) satisfy Eq. (5.5.4) of that reference, i.e., 

(r’~‘llT(~)ll~A = (-~)“-‘(~~llTt(~)Il~‘~‘)*. (66) 
Matrix elements for nuclear-spin operators obtained using Eqs. (62) and (65 ) are, 
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however, consistent with matrix elements for the same operators obtained using the 
reduced matrix elements in Eqs. (53) of Ref. (ZS), which are defined there to be 
Hermitian, as is commonly done when using ladder operator techniques (23, 25). 

Matrix elements H,, of the operators in Eqs. (47 ), ( 5 1)) and (58 ) can now be 
evaluated by standard spherical tensor procedures (29). Since the molecular geometries 
and nuclear magnetic dipole moments are known, there are no adjustable parameters 
in this evaluation. (The electron-coupled contribution is neglected.) Various matrix 
elements are collected in- Table XIV. Twelve anticrossings have been selected that 
illustrate the anomaly discussed in Section 1. The first six are hyperfine anticrossings 
in CHsSiFs with K = L2 +-+ 0. Rows 7 through 9a refer to barrier anticrossings in 
CH3 SiH3 with K = + 1 ++ 3 1. Rows 10 through 12a refer to a similar set of barrier 
anticrossings in CH3SiF3, but with J = 2 instead of J = 1. 

In Table XIV, rotational and torsional quantum numbers for the two states partic- 
ipating in the avoided crossing are given in columns 2-6 and 7- 11, respectively. Cor- 
responding nuclear-spin projection quantum numbers for top and frame nuclei are 

TABLE XIV 

Matrix Elements” for Various Anticrossings 

f/b J’ K' o' r' mJ' J K (I r mJ Mt' Mf' Mt Mf IH,,IC Icalc d I obse 

1 2 +2 0 El +2 2 O_+lE4 0 
la 2 &? 0 El +2 2 031E4 0 
2 2 t2 Fl E2 r;2 2 071E4 0 
2a 2 f2 rl E2 t2 2 0 fl E4 0 
3 2 +2 *l E3 f2 2 0 fl E4 0 
3a 2 f2 fl E3 +2 2 0 rl E4 0 
4 2 k2 71 E2 _+2 2 0 OAl 0 
5 2 i-2 0 El t2 2 0 OAl 0 
6 2 t2 fl E3 +2 2 0 OAl 0 

---------------------------------______-___ 

7 1 ?l 51 E3 fl 
7a 1 ?l 71 E3 kl 
8 1 ?l ~1 E3 kl 
8a 1 kl Tl E3 il 
9 1 *1 il E2 +1 
9a 1 ?l +l E2 tl 

-------------------_----------------------- 

10 2 fl ~1 E3 tl 2 rl 0 El +l 
10a 2 fl ~1 E3 ?;l 2 fl 0 El irl 
11 2 cl ~1 E3 +l 
lla 2 ?l ~1 E3 a?1 
12 2 Cl kl E2 +1 
12a 2 fl ?l E2 +l kl12 7312 +3/Z 7112 0.450 tf 0.1220 NO 

aRotational and torsional quantum numbers for the two states involved in the matrix 
element of a given tow are given in columns 2-6 and 7-11 in the notation of Fig. 1 and 
Table I of Ref. (5). Laboratory-fixed top and frame nuclear spin projection quantum 
numbers are given-in columns 12-15. 
bArbitrary number for convenient reference. Matrix elements in rows l-6 are for 
CH3SiP3 and correspond to the avoided crossings shown in Fig. 2 of Ref. (6). Matrix 
elements in rows 7-9 are for CH3SiH3, 
Fig. 2 of Ref. (5). 

and correspond to the avoided cros&gs shown in 
Matrix elements in rows lo-12 are for CH3SiP3 (5). Quantum 

numbers indicated in rows la, 2a, etc. represent alternative &J and/or Ao assignments 
for crossings in the corresponding tows 1, 2. etc. 
'The symbol t (top), f (frame) or tf indicates a matrix element H,, calculated from Eq. 
(47). (51) or (58). respectively. 

dFraction of the full intensity available, as calculated from Ea. (67). 
eObserved (Yes), unobserved (Nb), and uksted (U) lines, or ark'kar~ly normalized 
relative intensities within a group, if available. 
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given in columns 12-l 5. The label tf in the column headed ) H,, 1 indicates rows where 
matrix elements of Wg, in Eq. (47) and W,‘, in Eq. (5 I ) are both zero for any choice 
of nuclear-spin projection quantum numbers M{, M’r, M,, Mf; for these rows nonzero 
contributions are only possible from W:f in Eq. (58). Furthermore, if several values 
for the nuclear-spin quantum numbers in these rows lead to nonzero matrix elements, 
only the set giving the matrix element of maximum absolute value is shown. The 
labels t or fin the column headed ) H,, 1 indicate rows where contributions are possible 
from H$ or H,f,, respectively, in addition to contributions from Hi.,:. Since contri- 
butions from H’,f turned out to be significantly smaller than those from Hi., or Hf,, 
only matrix elements for the latter two operators are given. For such matrix elements, 
either Mt or A4r does not change. 

All rows but three in Table XIV are associated in pairs, corresponding to a simul- 
taneous change in sign of the quantum numbers in the K, c, and mJ columns. (The 
exceptions are rows 4, 5, 6, for which K = u = mJ = 0.) For each of the pairs in rows 
7 through 12, the two assignments correspond in a magnetic field to two distinct two- 
level problems. For each of the pairs in rows 1 through 3, there arise (for specific sets 
of the nuclear-spin quantum numbers) three-level systems which cannot be reduced 
to two-level problems by applying a magnetic field. However, for each such case in 
rows 1 and 2, the coupling between two of the three levels involved dominates. Thus, 
with the possible exception of some of the magnetic components in the pair (3, 3a), 
the transition probabilities of interest can be calculated using a suitable two- 
level model. 

The large AC Stark effect associated with the permanent dipole moment of sym- 
metric-top molecules introduces important modifications (1.5) in the standard two- 
level problem ( IO), so that when the avoided crossings are characterized by interaction 
matrix elements below a certain threshold, the maximum transition probability in a 
molecular beam electric resonance experiment drops below unity. For the CH3SiF3 
measurements (6) considered here (6.2-cm-long C-field), unity transition probability 
can be achieved only when the energy separation vc = 2 IN,, 1 at the avoided crossing 
is greater than v,,, = 7.6 kHz (1.5); for the CH3SiH3 measurements (5) (3.0-cm C- 
field), v,,, = 15.8 kHz. If v, < V,in, the maximum possible transition probability is 
given by (15) 

sin2[(Vclvmin)(~/2)l = sin2[(ffs,/v,,,)~l. (67) 

Since the minimum energy separation at the avoided crossing is twice the interaction 
matrix element, we have replaced (v,/ V,in) by 2( H.$,/Vmin) on the right of Eq. (67), 
where H,y, represents any of the nuclear spin-spin matrix elements of Eq. (47), (5 1 ), 
or (58). 

Column I7 of Table XIV gives a calculated value ( Icalc) for the molecular beam 
electric resonance relative signal intensity. This value represents a sum of contributions, 
one from the hyperfine matrix element actually shown, plus others from hyperfine 
matrix elements characterized by other possible sets of nuclear-spin projection quantum 
numbers. For example, Zcalc in row 1 is simply four times the value 1 .O obtained when 
1 H,, 1 > 3.8 kHz. The factor of 4 arises from the upper and lower sign choices indicated, 

and from the two additional choices of M; = Mf = k$. Icalc in row 5 is eight times 
the value obtained when 1 H,s,, 1 = 2.460 is substituted into Eq. (67). The factor of 8 
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arises from the upper and lower signs indicated, and from the values of M; = il& = f 1 
and rt$. Icalc in row 1 a involves twice the sum over two different 1 H, j values, etc. 
Adding the intensities together implies an instrumental linewidth large enough to 
encompass any splittings caused by the small magnetic field mentioned earlier. For 
smaller instrumental linewidths and/or larger magnetic fields, the transitions in any 
given row may split into a number of resolvable components, though the details of 
such splittings depend on the nuclear-spin quantum numbers in the row and on the 
molecule involved. If the magnetic field and transition are such that only one two- 
level system in a given row falls within the instrumental linewidth, and indeed if this 
is the two-level system of maximum intensity in that row, then it is appropriate to 
discard the summed intensity entry in column 17, and to use instead the one-transition 
relative signal intensity obtained by substituting 1 H,, 1 from that row into Eq. (67). 

B. Neglect of Nuclear Spin-Rotation Interaction 

It is difficult to calculate the relative contributions of spin-rotation and spin-spin 
interactions to the matrix elements giving rise to the observed avoided crossings, because 
the magnitude of the relevant spin-rotation coupling constant cannot be estimated a 
priori to sufficient accuracy. However, arguments can be advanced which suggest that 
spin-rotation interaction can be neglected in the present discussion of observed and 
unobserved avoided crossings. For rows l-6 in Table XIV, AmJ = +2. In general 
1 Am, I < 1 for a spin-rotation term in the Hamiltonian matrix, so that only the spin- 
spin interaction can contribute to rows l-6. For rows 7-12, an assignment with Am, 
= 0 is possible, and this argument does not apply. However, both for CH3 SiH3 (5) 
and CH3 SiF3 (6)) it was found that anticrossings for which 3m: - J( J + 1) = 0 could 
not be detected, whereas corresponding anticrossings for which 3m: - J(J + 1) # 0 
could be easily observed. Since spin-spin matrix elements vanish when 3m: = J(J 
+ 1 ), while spin-rotation matrix elements do not, this observation suggests strongly 
that spin-spin effects dominate spin-rotation effects when both are present (at least 
for the anticrossings which were detected). We thus confine attention in what follows 
to spin-spin interactions only. 

C. Previous Observations in CH3SiF3 and CH3SiH3 

The status, before the present work, of experimental observations with regard to 
the 12 anticrossings in Table XIV is specified in the last column of Table XIV. In this 
column an avoided crossing is characterized as observed (Yes), unobserved (No), 
untested (U) , or by relative intensity information where available. Each U that occurs 
refers to an alternative assignment for an anticrossing characterized as observed. For 
these cases, the choice between U and Yes is based on the calculations presented here, 
rather than on magnetic field studies of the type discussed in Refs. (5)) (6). 

Figure 2 of Ref. (6) illustrates four observed (heavy dots) and two unobserved (no 
dots) “hyperfine” avoided crossings between K = +2 and K = 0 levels for J = 2 in 
CH3 SiF3. Because no magnetic studies were carried out for the anticrossing between 
I” = E2 and T = Ed, the assignments given in rows 2 and 2a could not be distinguished 
at that time, and assignment 2a was selected in Fig. 2 and Table 2 of Ref. (6). In view 
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of the intensity calculations in Table XIV, we conclude that the earlier assignment 
should be changed to that in row 2. 

It can be seen from the relative intensities given for the observed transitions in rows 
l-6, that stronger lines correspond to larger values of Zcalc, but that the ratio of observed 
to predicted values ranges from 0.5 to 1.2. These discrepancies between predicted and 
observed relative intensities presumably arise from the difficulties of making good 
intensity measurements, particularly since the spectra examined for Table XIV were 
originally recorded without any intention of determining accurate relative intensities. 
In addition, the effects of field inhomogeneities have not been taken into account. It 
is nevertheless satisfying to note that the unobserved avoided crossings are predicted 
theoretically to be considerably weaker than those actually observed. 

Figure 2 of Ref. (5) illustrates two observed (heavy dots) and one unobserved (no 
dot) “barrier” avoided crossing for the J = ) KI = 1 states of CH3SiH3. These crossings 
correspond to the matrix elements in rows 7-9 of Table XIV, and were chosen for 
discussion here because both careful magnetic studies and careful searches for the 
missing crossing were carried out. 

In the Zeeman studies described in Refs. (3, 5, 6), the behavior of an avoided 
crossing when a magnetic field is applied allows one to distinguish between assignments 
with AmJ = *2 and those with Am, = 0. For these two types of anticrossings, the 
spectral lines are, respectively, split and unaffected by the Zeeman effect. Because the 
observed spectra were not “magnetically active,” the Am, = +2 assignments, corre- 
sponding to rows 7a and 8a, were experimentally rejected (5) in favor of the assignments 
in rows 7 and 8. From Table XIV we see that signals from the rejected mixing mech- 
anisms are expected theoretically to be only 3% of the stronger observed signal. 

Anticrossings of the type specified in rows 9 and 9a were the most puzzling in the 
selection rule studies carried out previously. For CH3SiH3 (5). CH3SiF3 (6), and 
CH3CD3 ( 7, 8), attempts were made to observe these I” = E2 ++ r = El anticrossings 
for a variety of values of J’ = J, m;, and mJ. Studies were carried out both with and 
without a magnetic field. None of these attempts was successful. These results were 
surprising because the E2 t-* El anticrossings are so similar to those for E3 - E, (row 
7) and E3 - E2 (row 8), both of which were easily detected. On the one hand, it was 
tempting to attribute the difference in detectability to a smaller mixing matrix element; 
on the other hand, within the framework of the standard two-level problem (IO), the 
magnitude of this matrix element is not critical, since the amplitude of the driving 
electric field can be adjusted to compensate. The null results for the E2 ++ El case for 
these three symmetric tops with diverse properties provided the initial motivation for 
the current work. 

In an attempt (5) to obtain a definitive answer on the observability of the E2 - E, 
anticrossings, a particularly careful search was carried out, averaging a large number 
of scans; the search was unsuccessful. Because Zeeman studies had shown that the 
assignment with Am, = 0 was correct for rows 7 and 8, it was assumed at the time 
that this was also the case for row 9. It was routine at that time to apply a magnetic 
field during the search to avoid difficulties in the coupling scheme (see above). If a 
magnetic field was indeed present, the stronger signal, due to assignment 9a, would 
have been shifted outside the search region, and only the weaker one, due to assignment 
9, would have been present. This is only 0.5% of the stronger line in row 7 and would 
not have been detected. Unfortunately, the original records do not state explicitly that 
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the magnetic field was applied. If it was not, then the stronger signal due to row 9a 
would have been present. This has 3% of the intensity of the line in row 7 and should 
have been detected under our careful search conditions. 

A set of measurements for J = 2 in CH3SiF3 similar to those discussed above for 
J = 1 in CHs SiHs are shown in Fig. 1 of Ref. (6). These measurements correspond 
to the matrix elements in rows lo-12 in Table XIV. (It should be noted that there is 
a misprint in Table 2 of Ref. (6). In the assignment for the first barrier anticrossing 
of type E3 +-+ E2 listed there (J = 2), a0 should be F 1 rather than & 1.) It can be seen 
that the theoretical relative intensity picture and experimental observations for the J 
= 2 barrier anticrossings in CH3SiF3 remain largely unchanged from those for J = 1 
in CHs SiH3. 

D. New Measurements 

With the methods and insight developed in carrying out the analysis described 
above, it proved possible to observe the missing EZ ++ El anticrossing in CH3SiH3 
discussed in Section 4C. Unfortunately, an external magnetic field could not be applied, 
and the measurements were made in the ambient field. As a result, three assignments 
had to be considered, corresponding to row 9, row 9a, and the hybrid of the two. The 
spin-spin matrix elements of row 9a are noticeably larger than those of row 9, so the 
assignment was made to row 9a. The spin-rotation interaction could in principle 
contribute enough to row 9 to make that assignment more favorable, however, so that 
in spite of the success of the experiment, this assignment ambiguity must be kept 
in mind. 

The experiment was carried out with equipment and techniques very similar to 
those described earlier (I-8). The Pyrex C-field (4) was 3.2 cm long. It was used in 
the configuration which can drive only transitions that conserve the Z-component of 
the total angular momentum. The spectrum was measured in a static electric field of 
536.6 V/cm, which is 0.41 V/cm below the crossing field (precisely calculable from 
other measurements). The signal is illustrated in Fig. 3. The trace shown was obtained 
by averaging 16 scans; each scan took 50 set and the time constant was 1 sec. The 
observed full-width at half maximum is 30 kHz, as compared to the expected time- 
of-flight linewidth of 14 kHz. We ascribe this difference to inhomogeneities in the 
static electric field. (The C-field had been shortened to 3.2 cm to reduce the effects of 
the field inhomogeneities on the intensity. These effects are very difficult to model 
and have not been taken into account.) 

In order to detect the signal in Fig. 3, the first-order Bessel function J, in Eq. (2 1) 
of Ref. (15) was maximized by setting its argument equal to 1.8. The known tuning 
rate of the line, ApCLKM = 370 kHz/( V/cm), and the known radio frequency, v = 150 
kHz, were then used to obtain an optimum value of E = 0.7 V/cm for the RF field 
to be applied for the previously unobserved very weak E2 ++ El spectrum. The observed 
intensity ratio for the EZ +-+ El (row 9a of Table XIV) and E3 ++ El (row 7) anticrossing 
lines was 0.040. This is in reasonably good agreement with the ratio of 0.028 calculated 
for the 3.2-cm-long C-field. 

5. SUMMARY 

The original goal of this work was to show group-theoretically that certain missing 
avoided crossing signals mentioned in the previous section were forbidden by symmetry 
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FIG. 3. The E2 - E, avoided-crossing spectrum observed in a static electric field 0.41 V/cm below the 
crossing field. The line is assigned to the barrier anticrossing (J = 1, K = +l, g = +I, IVZ~ = + 1 tf J = 1, 
K = &l, c = 0, mJ = 91), i.e., to row 9a in Table XIV. This represents a class of avoided crossings with 
very small mixing matrix elements. The successful observation depended critically on an understanding of 
the AC Stark shift and its effect on the lineshape function. 

arguments. When all of our attempts to construct such a group-theoretical proof failed, 
the goal of the work changed to an attempt to understand why the sensitivity of the 
molecular-beam electric-resonance method might be greatly reduced for avoided 
crossing signals of the type under discussion. Once an explanation for this reduction 
in sensitivity was found (1_5), the group-theoretical analysis developed here was applied 
to the calculation of the spin-spin mixing matrix elements. These were then used in 
conjunction with the transition probability for the generalized two-level problem ( 15) 
to explain at least qualitatively the anomalies observed in the earlier selection rule 
studies. Finally, the results of Ref. (15) were applied to determine the optimum am- 
plitude of the RF electric field in these avoided crossing experiments and, indeed, an 
example of a missing signal has now been found. 

The formalism presented here for dealing with hyperfme Hamiltonians in symmetric- 
top internal-rotor molecules should be useful in quantitative studies of hyperfine 
structure in such molecules. 

RECEIVED: September 28, 1990 
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