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The m-fold extended group G{;’l), corresponding to the permutation-inversion group G,z for
molecules like H;C-SiH;, has been obtained. In this group, m is the smallest integer for which
mp is also an “integer,” where p is the usual ratio of the moment of inertia of the top about the
A axis to the moment of inertia of the molecule about the 4 axis. The extended group has 18m
elements, divided into (9m + 3)/2 or (9m + 6)/2 classes, for odd and even values of m, respectively.
Using this group, it is possible to assign definite symmetry species in an internal-axis-method
(IAM) treatment to laboratory-fixed, molecule-fixed, top-fixed, and frame-fixed projections of
various vector operators, thus making it possible to express the spin-rotation and spin-spin con-
tributions to the hyperfine interaction operator in terms of rotational angular momentum com-
ponents, nuclear-spin angular momentum components, and functions of the torsional angle, all
of which have known symmetry species and selection rules in the IAM basis set. Using a hyperfine
Hamiltonian constructed on the basis of these considerations, together with a recent treatment
of the two-level problem modified to take into account large first-order Stark effects, it is possible
to rationalize the pattern of observed and unobserved avoided-crossing signals in recent molecular
beam studies of symmetric-top internal rotor molecules. With this understanding, it also proved
possible to detect for the first time one of the “missing” avoided-crossing signals in CH;SiH;.
© 1991 Academic Press, Inc.

I. INTRODUCTION

In a series of earlier papers (/-8), two of the authors have developed and applied a
new avoided-crossing molecular beam electric resonance technique for directly deter-
mining: (1) the 4 (or C) rotational constant of symmetric-top molecules, (ii) the torsional
splittings (and thus the barrier heights) for symmetric-top molecules exhibiting high-
barrier internal rotation motion, and (iii) a variety of other parameters associated with
symmetry axis rotation and internal rotation motions in symmetric-top molecules.
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This technique requires the existence of a Stark-tuned avoided crossing. Two levels
that could be brought by an external Stark field into exact energy coincidence, if there
were no connecting matrix element, repel each other and do not cross. It was established
(1-8) that, depending on the quantum numbers involved, the necessary coupling
could be produced by the rotationally generated dipole moment perpendicular to the
symmetry axis (9), or by the nuclear hyperfine interactions.

However, a troubling puzzle remained. It was found for CH;3SiH; (5), CH;SiF;
(6), and CH;CD; (7) that certain avoided crossings could not be observed, in spite
of their apparent similarity to those which were easily detected. For reasons inherent
in the standard two-ievel problem (/0), a small magnitude for the coupling matrix
element was not considered to be an adequate explanation for the anomaly: Within
the framework of the standard two-level problem, the transition probability can in
principle always be made unity by increasing the strength of the driving field, provided
only that the coupling matrix element is nonzero. It was tentatively concluded (5, 6)
that the matrix elements involved must vanish, but further investigation ( 7) showed
that in fact the necessary coupling could be provided by the spin-spin interaction
between nuclei in the top and frame rotors of these molecules. This puzzle provided
the initial motivation for the current work.

The present paper has evolved to serve three purposes. First, the extended group
(11) introduced for the asymmetric rotor F:C-NO (12) is applied for the first time
to the torsion-rotation problem in a symmetric top. This may facilitate analysis of
high-precision data on torsion-rotation-vibration energy levels (13, 14). Second, the
extended group is used to develop the nuclear hyperfine Hamiltonian in molecules
such as H3;C-SiH;. This lays the ground work for analysis of the nuclear hyperfine
splittings that can now be observed by molecular beam techniques. Finally, a formalism
1s developed to evaluate mixing matrix elements arising from the spin-spin interaction.
In an attempt to use these matrix elements properly, we have recently considered the
two-level problem for a symmetric top where at least one level has a linear Stark effect
(15) and found that the transition probability cannot always be made unity. In fact,
if the transition moment is small enough, the transition will be unobservable, The
mixing matrix elements evaluated here are thus used in conjunction with these modified
two-level transition probabilities (/5) to explain the avoided-crossing anomalies (5-
7) that formed the 1nitial puzzle.

For a symmetric rotor, both the principal-axis method (PAM) and the internal-
axis method can easily be used to diagonalize the torsional Hamiltonian (/6), and
hence to treat vibronic, rotational, and nuclear spin problems. While the PAM is
inherently simpler, it has the serious disadvantage that, in the high barrier limit, the
problem does not readily reduce to that of a rigid rotor and a small-amplitude torsional
oscillator (16). Thus, for example, it is difhicult to isolate nuclear hyperfine terms
which vanish in the high-barrier limit from those which would be present in simpler
systems such as CHsF. On the other hand, the IAM does separate such terms “prop-
erly,” an advantage which is particularly important in the early stages of an analysis.
Unfortunately, in the IAM, the torsional and rotational wavefunctions, as well as
many operators, do not transform properly according to the irreducible representations
of the G g permutation-inversion group (/7), and the derivation of selection rules
cannot be carried out in the IAM by conventional group-theoretical methods. It is in
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large part to overcome this last difficulty that the extended-group formalism has been
introduced.

The extended-group formalism (/1) developed here for molecules like HyC-SiH;
is based on many of the ideas used in an earlier extended-group treatment (/2) for
molecules like FsC-NQO. The reasoning leading to the introduction of the extended
group can be described for the F;C-NO case as follows. One begins with the Longuet-
Higgins permutation-inversion group (/7) for F3C-NO, which contains as one of its
elements the cyclic permutation (123), if the three fluorines are numbered 1, 2, and
3, respectively. In this permutation-inversion group, (123)? is clearly equivalent to
the identity operation, since the net result of three successive (123) interchanges is
that no fluorines have been interchanged. However, in an IAM treatment (/6) of
F;C-NQO, each forward rotation of the CF; top is accompanied by a smaller backward
rotation of the whole molecule (to cancel any angular momentum generated by the
internal rotation motion ). Thus, since (123)° represents a 2« rotation of the CF; top
in, say, the forward direction, it must be accompanied in the IAM treatment by some
rotation less than 27 of the whole molecule in the backward direction. Since the
molecule is not restored to its original position in space by these two rotations, the
operation (123)? does not correspond exactly to the identity operation. If, however,
we now perform (123)? m times, i.¢., if we perform ( 123)%”, then for a suitably chosen
(and perhaps large) integer m, the molecule can be returned arbitrarily close to its
original position. It is the existence of the extra operations (123)” with 4 £ n < 3m
— 1 which gives rise to the additional elements in the extended group. The reader is
referred to Ref. (/2) for a description of the mathematics corresponding to the words
in this paragraph.

On another historical note, one of the authors proposed some time ago (I8) the
use of a double group for molecules like H;C-SiH;. This value of »1 = 2 for the
extended group arose because the coordinate system considered in ( /8) for HyC-SiH;
was closely analogous to the IAM coordinate system appropriate for molecules like
H,C-CH;, with two identical coaxial rotors. However, for molecules like H;C-SiH;,
with two nonidentical rotors, the coordinate system of (/8) has neither the high-
barrier advantages of the IAM system (/6) nor the simplicity of the principal-axis-
method system (16). It is our present opinion that the approach taken in (/8), while
not technically wrong, is nevertheless ill-advised. Values of m # 2, as determined in
the present paper, are clearly to be preferred.

The remainder of this paper is divided into three main parts. In Section 2, the
coordinate system, symmetry operations, and group theory are dealt with. In Section
3, the spin-rotation and spin-spin contributions to the hyperfine Hamiltonian are
explicitly constructed, in terms of operators having known symmetry properties and
selection rules. In Section 4, the application to the anticrossing anomalies is discussed.

2. EXTENDED-GROUP THEORY
A. IAM Coordinate System

We here follow closely the procedures of (12), expressing the Cartesian coordinates
of the atoms in terms of the vibrational and rotational variables used in the molecular
wavefunction through the equation
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R, =R+ 57 (x8¢)[a(a) + d], (1)

where the 3 X 1 column matrices R; and R contain the laboratory-fixed components
of the position vector of atom j and of the molecular center of mass, respectively; the
3 X 3 matrix S '(Xxf¢) contains the direction cosines, defined for S*'(x0¢) in Eq.
(4) of (12) as functions of the rotational (Eulerian) angles; the 3 X 1 column matrix
a;( ) contains the molecule-fixed components of the reference configuration obtained
after an internal rotation through the torsional angle « (1o be defined more completely
below); and the 3 X 1 column matrices d; contain the molecule-fixed components of
the infinitesimal displacement vectors used to describe the small-amplitude vibrational
degrees of freedom.

Before defining the reference configuration, it is convenient to imagine a molecule
like H;C-SiH; as consisting of a coaxial top rotor (e.g., the CH; group) and frame
rotor (e.g., the SiH; group). The atom numbering scheme adopted here is illustrated
in Fig. 1, indicating that hydrogens 1, 2, 3 are in the top, while hydrogens 4, 5, 6 are
in the frame. It is then convenient to define the reference configuration a;{ «) in terms
of an initial configuration a? through the equations

a(a)=S57"(a,0,0)af
ST, 0,0)=S""(-ap +,0,0), iCtop
S7'(a, 0,0)=S""(—ap,0,0),  iC frame, (2)
where
p = Liop/ (Liop + Itrame) (3)

is the usual ratio (16) of moments of inertia about the internal rotation axis occurring
in symmetric-top problems. The quantity +« occurring in the argument of S~ for

(a)
y
Hg , Hq
H3 a
z X
“pa
H Ha
6
Ho

(b)

FIG. 1. (a) The initial configuration a? as defined in Table 1. For the initial configuration, the xz plane is
a plane of symmetry. (b) An internally rotated reference configuration a;(«), as defined by Egs. (2). for «
>~ +75°and p = }.
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TABLE |

The Initial Configuration® a? for Use in Egs. (2)

Atom  (a;%)y (2;%)y (a;9), Atom  (a;%)y (a3 (a;°),

H; (ar%)g 0 (ag®), - A, H, (ag®)y 0 (ag®)y - A,
Hy (-1/2)(a,®), (+/3/2)(3,9)y (8%, - A, Hy (-1/2)(ag%y (+/3/2)(ag%)y (a5%); - A,
Hy (-1/2)(a%)y (#/3/2)(a %)y (a®), - A, He (-1/2)(ag®)y (-/3/2)(ag®), (ag%); - A,
c 0 0 (ac®), -~ A, 5i 0 0 (agi%), - A,

A, = [3uy(ap®), + 3mylag®), + mglac®), + mg;(ag;®),]/ (Gmy + 3my + mg + mg;)

aCH bond lengths for the top are given by {(ato)x2 + [(ato)z—(aco)z]z)l/z; SiH bond lengths for
the frame are given by {(af")x2 + [(afo)z-(aSi°)z]2}1/2. The quantity A, insures that the

center of mass of the initial configuration lies at the origin.

top atoms gives rise to the internal rotation of the top with respect to the frame; the
quantity — ap in the argument for both top and frame atoms gives rise to the backward
rotation of the whole molecule. Atom positions a? in the initial configuration, which
are taken to be constants (and thus unaffected by differentiation, symmetry operations,
etc.), are given in Table I in terms of the various bond lengths in the molecule.

Constraint equations for the small-amplitude displacement vectors d; are as given
in Eq. (14) of (12). Since the d; will be neglected in this paper, these constraints will
not be discussed further. Again as in (/2), the reference configuration itself satisfies
a number of equations:

> mia(a) =0
> mai(a)-(da;/da) =0
> mia(a) X (da;/da) =0. (4)

The first of these indicates that the center of mass of the reference configuration remains
at the origin during internal rotation. The second holds because bond lengths are not
permitted to vary during internal rotation in the model adopted. The third equation
indicates that no angular momentum is generated during the internal rotation motion;
i.e., the coordinate system used for the reference configuration is an IAM coordinate
system (/6). It is the third equation which leads to the value of p given in Eq. (3).

B. Symmetry Operations and Group Generators

The point group appropriate for a molecule like H3C~SiHj; in either a staggered or
an eclipsed equilibrium geometry is Cs,. The permutation-inversion group Gs ap-
propriate for molecules like H;C-SiH; when internal rotation motion occurs has been
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given by Bunker ( 19). His character table for this group is reproduced in Table II. It
can be seen that the group has two nondegenerate representations, 4, and 4,, and
four doubly degenerate representations E,, E,, F3, and E,. For the atom labeling of
Fig. 1, the latter correspond to functions which are invariant to: rotation of the top
alone, rotation of the frame alone, internal rotation of the molecule, and rotation of
the whole molecule, respectively. ( Although the handedness of the atom labeling
scheme adopted here differs from that in Ref. (19), this difference affects neither the
correspondence above nor the character table.)

If the effect of the cyclic permutation (123) on a function of the laboratory-fixed
Cartesian coordinates R, is defined to be

(123)'f(R13 R2a R3a RC; R4a R5a R6, RSi)

E+f(R2’ R3’ Rla RC, R4’ R59 R6’ RSi)a (5)

etc., then it can be shown by direct substitution in Eqs. (1) and (2) that the variable
transformations given in Table III are equivalent to the permutation-inversion oper-
ations indicated. From the second line in Table III, we see that the operation (123)?
does not represent the identity when applied to the rotational part of the molecular
wavefunction, though it must of course be the identity when applied to the full wave-
function. It is this peculiar behavior of (123)3 which leads to the introduction of an
extended group (72).
Let us now define three generators for the extended group,

C.= (123)

Cr= (456)

5= (23)(56)*, (6)
TABLE II

Character Table for the Permutation-Inversion Group G,g for H;C-SiH;3*

[n]® PI®  [1] E [2] (123) [2] (456) [2] (123)(456) [2] (123)(465) [9] (23)(56)*
A 1 1 1 1 1 1
Ay 1 1 1 1 1 -1
E; 2 2 -1 -1 -1 0
Ey 2 -1 2 -1 -1 0
Eq 2 -1 -1 2 -1 0
E, 2 -1 -1 -1 2 ]

3From Ref. (19).

umber of permutation-inversion operations in each class. When the number is 2, the class
consists of an element and its inverse.
€A representative permutation-inversion element from each class, described using the atom
numbering scheme of Fig. 1. (The slight difference in numbering from that used in Ref. (19)
does not change the form of the character table from that given in Ref. (19).)



14 HOUGEN, MEERTS, AND OZIER

TABLE III

Transformations of the Variables on the Right Side of Eq. (1) Corresponding to Various
Permutation-Inversion Operations® on the Left Side of Eq. (1)

P12 GENP c-o-mC® RoTNd INT ROTNG  VIBRATION® j = fen(1)®
E R X»0,0 a 4
(123) C, +R x-21p/3,8,0 a-21/3 C3/p_1dj j =i, i © frame; ajo = C3+lai°, ictop

(456) C¢g +R x-2n(p-1)/3,8,¢ a-27/3 C3/(p_1)'1dj j =1, i c top; aj° = C3“1ai°, i ¢ frame

(23)(56)* ¢ -R w-X,T-6, T+ - avdj ajo = cv'laiO

4The permutation-inversion operations act on the laboratory-fixed components of the position vectors of
each atom R;, using the numbering scheme of Fig. 1.
e symbols for the generators of the extended group of Gjg are to be used in Eqs. (7-9).

CLaboratory-fixed components of the position vector of the center-of-mass.

9The rotational (Eulerian) angles and the internal rotation angle.

©Infinitesimal displacement vectors for the small amplitude vibrations. The subscript j is defined as
a function of the subscript i by the relations between initial vectors a; © indicated in the last
column of the table, where Cg 1" corresponds to S*1(2n/s,0,0) with s = 3, 3/p or 3/(p-1), and where
the rotation matrix S™* is given in Eq. (4) of Ref. (12); o, = o(xz).

where the equalities in Egs. (6) are meant to indicate that these generating operations
have the effects on the vibration—-rotation variables in the molecular wavefunction
indicated in the corresponding rows of Table III. If, following ( /2), we now chose the
lowest integer m such that mp is also an integer p to within the desired precision (e.g.,
to within the experimental error on p), then it can be seen that the generating equations
obeyed by the operations in Egs. (6) become

In=C¥"=06’=E, Cwo = cCP™!
Ci=Ct
C.Ci = CiCy. (7)

C3, Cio = oCY™!

From these generating equations it follows that a general element of the extended
group can be represented as

C*CuC 0", (%)
where the limits

O0sksm-—1

Osu,vs2

osws| (9)

on the superscripts in Eq. (8) indicate that the extended group has m X 3 X 3 X 2
= 18m elements.

The class structure of the extended group actually depends slightly on whether m
is an even or odd integer (in much the same way that the class structure for the groups
C,, differs for even and odd #»). By using the generating equations in Egs. (7), it can
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be shown that the extended group G(lg”) contains (9m + 3)/2 classes when m is odd
and (9m + 6)/2 classes when m is even. Most classes consist of two members, i.e.,
some particular element and its inverse. Exceptions to this rule for odd m are: the
identity, which is in a class by itself, and all 9m elements with w = 1 in Eq. (8), which
are in the same class. Exceptions for even m are: the identity and €32 each of which
is in a class by itself, and the 9m elements with w = 1, which are distributed equally
into two classes, one class for even values of (3k + u + v) and one for odd values of
(3k + u + v)in Eq. (8).

Experimental values for p and values for the rational numbers p/m approximately
equal to p are given in Table IV for four molecules. It can be seen that the extended
group G‘lg'” for H:C-CDs; is just a triple group Gﬁg) of G15. This simple example arises
essentially because the CH and CD bond lengths are equal, while the ratio of the H
and D masses is 1. It will be described in more detail after the general group-theoretical
discussion below.

We note in passing that the values of p given in Table IV are actually the effective
values indicated by p in Eq. (8a) of Ref. (/3). The accuracy for H;C-CF; (2) is much
lower than that for the other molecules. In this case, the accuracy was limited by the
nuclear hyperfine contributions to the energy splittings. With a detailed understanding
of the hyperfine Hamiltonian, it should be possible to extract information on the
hyperfine constants as well as to reduce substantially the error in p. For the other
molecules, p was determined entirely from anticrossings which are insensitive to the
hyperfine contribution to the energy splittings. In these cases, the uncertainty in p
= Liop/(Tiop T+ Iframe) 18 determined primarily by the difference (5 — p) produced
by higher order internal rotation effects (/3). In H;C-CD;, this difference is
~0.03% (7, 8).

C. Character Tables and Symmetry Species Labels

Tables V(a) and V(b) give the character tables for Gﬁgn) for odd and even values
of m, respectively. These character tables take relatively simple forms and can thus
probably be derived in a relatively simple fashion. In the present work, however, they
were derived rather more laboriously by trial and error generation of representations
using basis functions of the form e***_ ¢*#*/™ and suitable products thereof.

When m is odd ( Table V(a)), there are two nondegenerate representations 4, and

TABLE IV

Some Values of p/m Corresponding to Experimentally Determined Values of p

Molecule? H3C-CFq HyC-SiHy H3C-SiFy HyC-CD3
oP 0.0345(3.5%) 0.3518127(0.001%) 0.02546055(0.0027) 0.3339792(0.001%)
p/mC 1/30 (3.4%) 13/37 (0.13%) 7/275 (0.02%) 1/3 (0.19%)

aThe p values for these molecules are taken from references (2), (5), (6) and (7,8), respectively,
and actually correspond to the effective values p defined in Ref. (;g).
umbers in parentheses represent the experimental uncertainty in percent.

CNumbers in parentheses represent the difference between p and p/m in percent.
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Ay, which are also single-valued representations of (3. There appear at first to be
(9m + 3)/2 doubly degenerate representations £, since the first subscript s runs
from 0 to (3m — 1)/2 and the second subscript 7 runs from 0 to 2, but it turns
out that Egg = A; + A, and £y = Egy,, so that in fact there are only (9m — 1)/2
doubly degenerate representations. The single-valued representations of &3 among
the two-dimensional representations of G§8’“> are £Eg, = K, E,,, = E,, E,.n = E5, and
E,, = E,, where the symbols after the equal signs correspond to Bunker’s notation
(19) as reproduced here in Table II.

When m is even (Table V (b)), there are four nondegenerate representations, 4,,
A, By, and B, where the first two of these are single-valued representations of G 3.
There appear at first to be (9m + 6)/2 doubly degenerate representations, since s runs
from 0 to 3m/2 and 7 runs from 0 to 2, but Eo = 4, + Ay, Esn0 = B + B, Epy
= Egp, and Es, 2,0 = E3m)22, so that there are actually only (9m — 2)/2 E species.
The single-valued E representations are as given in the preceding paragraph.

The direct product of two E species (including Eqp or Es,,,/20) is quite easy to obtain
by inspection, since it can be shown from the character tables that

ES‘r X Es’r’ = Es+s’,r+r’ + ES—J’,7~1’- (10)

If the subscripts on the right of Eq. (10) fall outside of the ranges specified above,
they can be brought back into those ranges by noting from character Tables V(a) and
V(b) that

ES,‘J’ = E—s,—1 = Es,7i3 = Esi}m,f- (11)

The multiplication scheme of Eq. (10) can be visualized pictorially by a slight extension
of the circle diagrams used to visualize various aspects of the C,,, groups (20-22). For
the Gﬁ?) group, it is convenient to imagine three circles, labeled by 7 = 0, 1, and 2,
mod 3, respectively. The species F,, is then represented by the point(s) at +s(27/
3m) radians on the 7 circle. The multiplication of Eq. (10) then indicates that the
direct product of a point at s(27/3m) radians on the 7 circle with a point at s'(27/
3m) radians on the 7’ circle is given by a point at (s + s')(2#/3m) radians on the (7
+ ') circle and a point at (s — s')(27/3m) radians on the (7 — 7') circle.

As mentioned in Ref. (72), this pictorial representation of symmetry species by
angular positions on a circle strongly suggests that the arbitrariness inherent in the
choice of a particular rational number p/m as an approximation for p could be elim-
inated by working instead with some sort of continuous group. In the present formalism,
for example, the symmetry species £, for (J, J,) given in Table VII below corresponds
to an angle of p(2w/3m) on the circle. Since p/m = p, this symmetry species would
correspond to an angle of 27p /3 in the continuous group formalism. The appropriate
continuous groups almost certainly exist in the mathematical literature, but they have
not yet been searched for by the present authors.

D. Standard Forms for the Representation Matrices

Before using group theory to write down wavefunctions and operators of definite
symmetry species, it iS convenient to go beyond the information given in character
Tables V(a) and V(b) and to choose standard forms for the various two-dimensional
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irreducible representation matrices. If we label the two functions spanning a given
representation E,, as | E,,, yand | E,,_ ), orequivalently as | E,,yand | E_,_,), where
s and 7 are both positive, then we shall require that

C | E57+> — e*27ri:/3m 0 | EST+> ( 12)
t |EST_> 0 e+27r1’s‘/3m lESrf>
when s # 0, or we shall require that

E 'e+27ri/3 O E
Cf[l m+>}: W][l o.+>} .
|E01—> 10 e |E01—>
for the one doubly degenerate species with s = 0. We shall further require that
E.. [ 0 +I11[|E
G[I .+>}: HI +>} (14)

|[Ee->] [+1  OJ|IE.)

for all degenerate species. Equations (12)-(14) specify completely the form of all
representation matrices.

E. Transformation Properties of Basis Set Wavefunctions

Transformation properties of the rotational wavefunctions |KJM ) are easily de-
termined as in Ref. (12) from the Eulerian angle transformations given in Table III:

T[|KJM ), | ~KIM)] = Expkmods- (15)

Transformation properties of trigonometric functions of the torsional angle « can
also easily be determined from Table I1I:

I'[cos(as/m), sin(as/m)] = T[e*"**/™] = E. (16)

From a treatment very similar to that leading to Egs. (22)-(24) of Ref. (12) we find
for the ground torsional state in the high-barrier limit (i.c., in the limit of nearest-
neighbor tunneling only) that torsional wavefunctions of species Eq correspond to
internal rotation splitting energies of

2X,cos(2ws/3m), (17)

where X, is the nearest-neighbor tunneling matrix element.
The torsional wavefunctions used in Refs. (/-8, 13) can be written (16)

MD,K.U = eia(U_I)K) L’L‘.K.rf? ( 18)

where

Unkoe = 2. ASK,e¥. (19)

k=—o0

Here v specifies the number of torsional quanta excited and ¢ = 0, +1, —1 labels the
torsional sublevel. Except when K = ¢ = 0, the functions [ U, x,, U, — -] transform
as[A, + A,]. For the K = ¢ = 0 case, U, x, = U, _x ., and there is only one function,
which transforms as A, for even v and as A, for odd v. Furthermore, except for K = ¢
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= 0, [e*'="#X] transforms as E(,m kpo. For K = ¢ = 0, there is only one such
function, which transforms as A,. It follows then that, except for K = ¢ = 0, [ M, «.,,
M,_x_,] have the same transformation properties as [e*'*“*%)]_ For K = ¢ = 0, the
same relationship holds, provided v is even; in particular, it holds for the ground
torsional state. For K = ¢ = 0 and v odd, the M, transform as the U,go. The
transformation properties of the torsional functions can thus be understood by con-
sidering only the exponential factors in Eq. (18), provided one makes proper allowance
for the case with K = ¢ = 0 and v odd. From this discussion and Egs. (16) and (17),
it follows that s/m = (¢ — Kp/m) = (¢ — Kp), and 7 = 0 for the torsional wavefunctions
in Egs. (18) and (19), where s is to be kept in the desired range by using Eq. (11).

The symmetry species of nuclear-spin functions characterized by laboratory-fixed
projections of the angular momenta can also be determined easily by direct application
of the permutation-inversion operations. If we use the notation | M;, M,, M;) for
nuclei in the top and | My, Ms, Mg ) for nuclei in the frame, then for nuclei of spin
1 located in the top we find the symmetry species

I'[|+++)] = 4,
T{[|—++) + &3 |4+—+) + 773 | +4+-)]/V3} = Eyy, (20)

where | —++ ) is a shorthand notation for | M; = —§, M, = +4§, M3 = +} ), etc., and
where upper and lower sign choices correspond to wavefunctions transforming like
| E,nis y in Egs. (12)-(14). The 4, and E functions correspond to a total nuclear spin
I in the top of I, = 3 and I, = 4, respectively. Other functions belonging to the same
total spin 7, in the top and same symmetry species can be generated (23) using the
ladder operator (I, + I, + L)y — i(1, + I, + I3)y.

Similarly, for nuclei of spin 1 located in the frame, the species corresponding to
the functions in Eqgs. (20) are 4, and Eo; (| Eo,5 )), respectively. The A, and E species
correspond to a total nuclear spin in the frame of I; = 2 and I; = i, and the ladder
operator ([, + Is + Ig)x — i(I4 + Is + I¢)y can be used to generate other functions
with the same total /; and same symmetry species. For nuclei of spin 1 located in the
frame, we find

I[|+++)] = 4,
T{[10++) + =273 +0+) + ™73 | +4+0)1/V3} = Ey,
T{a[|—++) + e 3| +—+) + ™3| ++-3]/V3
+ B[[+00) + e**3|0+0) + 7273100+ )1/ V3 } = Eq,
T{c[|—++) + [+=+) + [++=)]1/V3 + d[|+00) + [0+0 + [00+)1/V3} = 4,
T{[|0+=) — [0—+) + |=0+) — |=+0) + [+—0) — [+0—31/V6} = 4,, (21)

where |0+— ) in Egs. (21) is a shorthand notation for | M, = 0, Ms = +1, Mg = —1),
etc., and upper and lower sign choices correspond to wavefunctions transforming like
| Eoi= ). For suitable choices of a, b, ¢, and d (23), the functions above correspond
in decreasing orderto | I, M;y=13,3%,(2,2),|1,1),]1,1),and |0,0), respectively.
The ladder operator (I, + Is + Is)x — i(I4 + Is + Ig)y can again be used to generate
other functions with the same total I; and symmetry species. Note that for nuclei of
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spin 1, there exist functions with the same symmetry species, but with different values
of I, i.e., T = Ey, with Iy = 1 or 2 and I" = A4, with I; = 1 or 3. Thus, I; will not, in
general, be a good quantum number, and the actual form of the spin functions will
depend on the magnitude of the nuclear hyperfine interactions.

The 27 + 1 multiplicities of the nuclear-spin wavefunctions, together with the sym-
metry species multiplication properties and the fact that Pauli-allowed overall wave-
functions belong to either the 4, or the A4, species of Gg (regardless of the value of
the nuclear spin for the individual nuclei), can be used to obtain statistical weights
for the overall torsion-rotation levels. For molecules like H;C-SiH; these are given
in Table B-4 of Ref. (11): A,(16), A,(16), Ey,(16), E,,,(16), E,»(8), and E,,(8).
For H;C-CDs, the corresponding statistical weights are: 4,(44), 4,(44), Fy (64),
E31(44), E32(32), and E30(32)

F. Simple Example: H;C-CDj;

We close this section by examining briefly as an example the triple group Gﬁg)
formalism for 1,1,1-trideuteroethane. Table VI gives the full character table for Gﬁg).

For this group, p = 1 and m = 3, so that symmetry species of the symmetric-top
rotational functions | KJM ) for even J and for K values from 0 to 9 are: A, E,;, E»,
Ey3=Es, Ega=E41, Ess=E4, Egs = Ex, E77 = Eny, Egg = E;;,and Egg = 4, + A,
respectively. For odd J, the K = 0 species is 4>. For K > 9, use the species given for
the same K mod 9.

Symmetry species for the torsional components of H;C-CDs split by internal rotation
tunneling in the ground torsional state and also the correct linear combinations of the
wavefunctions localized in individual wells in the threefold extended (m = 3) nine-
well formalism can be found in Fig. 4 of Ref. (/2). (The species E, there corresponds
to E, here.) Relative energies for these components, under the approximation that
only nearest-neighbor tunneling between wells is taken into account (i.e., only X; # 0
in Fig. 4 of Ref. (12)), are shown in Fig. 2 here, using a convenient geometrical
construction (20).

Torsion-rotation symmetry species are also shown in Fig. 2. Note, however, that
the subscript 7 on the representations E, for molecules like H;C-CD; does not play
exactly the same role as the quantity ¢ does for methyl top rotations about asymmetric
rotor frames (essentially because the integers ¢ = 0, =1 are sufficient to characterize
all representations of the cyclic group of order three, but are not sufficient to characterize
all representations of the direct product of two cyclic groups of order three). Nev-
ertheless, as indicated in the discussion above, a knowledge of K and ¢ permits one
to obtain K, s, and 7, and vice versa.

When the high-barrier limit is relaxed somewhat, next-nearest, next-next-nearest
neighbor tunnelings, etc., become important, and several terms are required in the
energy expression sum of Eq. (24) of Ref. (12) or Eq. (16) of Ref. (13). We note in
passing that even in this intermediate barrier case, many of the degeneracies exhibited
in adjacent K # 0 mod 3 energy stacks of Fig. 2 will persist.

For some additional discussion and an excellent experimental illustration of these
matters, the reader is referred to a recent Raman study of torsional overtones in
CH;CD; (24).



HOUGEN, MEERTS, AND OZIER

22

srodrp 8ys Jo sjusuodwod 103 seroeds Lajaummuks
g Ui sjuewsIe jo Isqunu oyj

11 o1qel ur 815 dnoa8 uorsisaur-uorjejnumzad
ay3 jo seroeds penyra-a78uls oyl se [Tem se ‘aIqe3} 9yl Jo ST Byl uo uvarf oae rojeisdo uwnjuswow rernSue TR0 pue lojeiado Juswow

rumnyToo yoea jo doj syl 1' uealf ST SSETO YOoE® JO JuUSWRTS sariBjussaides ® pue SSEID
*A1eaT3vedsea ¢,091s00 pue 08500 ¢,(QyS0d jJusseidex o1qe3 3yl Jo Apoq IYI UT D PuUEB 7D ‘IO STOqUAS BYI,

0 1- z - 97 o7 79T ¥o7 197 29T 197 79T 49T 1- ¢ g

X1 0 I- 1- 1- z z z - 1-  1- - 1-  I- 7z ¢ &x
0 I- 1- z 197 w97 T 197 79T 49T %7 197 79T 1- z &

0 1- 4 1- T 19T woT 197 797 %9 T wT 19 1- z g

0 - - z 707 197 #9C 7oT 9T 19T 197 79T %92 -z "

[4:9 0 1- 1- 1~ 1- I- 1- 7z T - - I- T &%
0 1- z 1- 7 T 192 797 497 19% %97 197 79T - z ‘G

Eo¥py(SneFiy 0 1- 1- z yor 797 192 yog 19T 797 797 %97 192 - ¢ g

L4 0 1- 1- I- 1- 1- I- - 1- 1- AN A z ¢ Wz
0 z 1- 1- UET AN YA £14 197 797 %9T 192 79T %9 1- 7 Oy

g 0 z z 4 1- I- 1- - 1- 1 1-  1- 1- z ¢ Oty
0 z 1- 1- [T CT AN Y4 yo7 197 79T y97 197 292 1- z O

0 z 1- 1- FCT AN CT AN <4 YA AN ET4 T 99T 192 1- z Ol

Zy ZpeZn 1- 1 1 1 1 1 1 T 1T 1 T 11 T 1 %y
ty Zr 1 1 1 T 1 1 1 1 1 1 LS S 11 Wy
(8To)a oa¥onPoge0rz Fogtogoz 30,%0c07 300t Fotogor Fotogor Fotor  Fogor Focor For ogor Yocor Yoz oz I

L aDEDEY 10§ dreudorddy se 41y dnoiny UOSIDAUT-UONBINWIdJ 3} JO

IA FT1dVL

wa dnoin opduy, oy



HYPERFINE HAMILTONIANS 23

E31 Eo1 E32 B3 Ep1 Egy

Eo1 Ea2  E31E3r Egp Eoq

K=012345¢6 7829
(a) (b)

F1G. 2. (a) Torsional energy level splittings and torsional symmetry species ‘T" for the ninefold well of
Gfg), as appropriate for H;C-CD;. The energy scale is arbitrary. The ratios of the splittings apply to a
torsional level deep in a high-barrier well, but even in the intermediate-barrier case, many of the degeneracies
exhibited in adjacent K # 0 mod 3 energy stacks will persist. The symmetry species correspond to even J
and even torsional quantum number v. The species ‘T’ = E,¢ here correspond to wavefunctions of species
E, in Fig. 4 of Ref. (12). (b) Torsional splittings as a function of the projection K of the total angular
momentum along the symmetric-top axis (on the same scale as (a)). Note that permissible torsion-rotation
symmetry species "I in G(.f;) all correspond to single-valued representations of G4 in Table II.

3. SPIN-ROTATION AND SPIN-SPIN CONTRIBUTIONS TO
THE HYPERFINE HAMILTONIAN

A. Symmetry Species of Laboratory-Fixed Vector Components

The symmetry species of the laboratory-fixed components of many vector operators,
including the total electric dipole moment g of the molecule, the total angular mo-
mentum J of the molecule exclusive of nuclear spin, and the nuclear-spin operators
I; for each atom /, do not depend on which component (i.e., X, Y, or Z)is considered,
and this fact is reflected in the shorthand notation below. Particles 1, 2, and 3 are
taken to belong to the top (sub- or superscript t); and particles 4, 5, and 6 to the
frame (sub- or superscript f). Since the permutation-inversion operations can be applied
directly to the laboratory-fixed components of the various operators, it is easy to show
that

Fl(w)xyoz] = A2
Fl(Ixyorzl = A1
Il(L + 1 + B)xyez] = A
Pl(L + Is + Le)xyorz] = Ai
C[(I + €L + e L)y yorz] = Emi
T[(L + =I5 + €™ lg)y yorz] = Eor, (22)

where the upper and lower signs in the last of Eqs. (22) correspond to operators which
transform like the functions | E,.;. ) and | Eqi5 ), respectively, in Eqgs. (12)-(14).
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B. Symmetry Species of Molecule-, Top-, and Frame-Fixed Vector Components

The easiest way to derive the transformation properties of vector operator com-
ponents taken along axes other than the laboratory-fixed X YZ axes is to consider the
transformation properties of the appropriate direction cosine matrix elements, since
the transformation properties of the latter can be determined easily by direct substi-
tution from the transformations of Eqs. (6) and Table IIL. If V is used to represent
an arbitrary vector, and the subscripts L, M, t, and f are used to indicate laboratory,
molecule, top, and frame components, respectively, then inspection of Egs. (1) and
(2) leads to the following transformation equations:

[V]M = S+1(X, 6: d))' [V]L
[VIi= S"'(X —pa+ e, 6, ¢)- [VLL
[Vle= ST (X ~ pa, 0, ¢)-[ VL. (23)

Symmetry species of vector components determined from the transformation properties
of Egs. (23) are given in Table VII. It is interesting to note that when the x, y com-
ponents of these vector operators are taken in the top-fixed or frame-fixed axis system,
the symmetry species are all single-valued representations of Gz, but when the x, y
components are taken in the molecule-fixed system, the symmetry species can be
multiple-valued representations of Gs. This fact agrees with the expectation that in
a principal-axis-method treatment, where only top- and frame-fixed coordinate systems
occur, the use of the extended-group formalism is unnecessary. (One should, however,
take care not to identify all aspects of a PAM treatment with the current use of top-

TABLE VII

Symmetry Species of Various Vector Operator Components

Operator?® LABD MOLECULE® topd frame®
Hx,y 24 Ep Em1 Epp

¥z A2 A A A

g,y and (I{+Ip+T5), o F 24, ) By Egq

J, and (I1+Iy+13),F Ay Ay Ay Ay

(1 + e2278/3L, 4 oF2M31y), o 2By By tEngpo ALt Ay + By Byg + Eyp
1y + o¥2M/31, + 723y, By Enyp Bt Eip

(14 + e¥2mi/31g 4 oF2mil3ryy o 2Eq, Epo + Epp Epo + Enp Ay + Ay + By
(1 + X2M/315 + 721131, Eo) B Fg; Eg1

Ay y is shorthand notation for wy,u, etc.

braboratory-fixed components, from Egs. (22).

CMolecule-fixed components, from the first of Eqs. (23).

Top-fixed components, from the second of Egs. (23).

SFrame-fixed components, from the third of Egs. (23).

f(IA+IS+16)x,y transforms like (Il+12+13)x,y and (IA+IS+IG)Z transforms like (I+IptI3),.
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TABLE VIII

Tansformation Properties under the Generating Operations® for G  of Vector Operators with
Components® Taken in Various Axis Systems®

Ce Cg a
(ILt)q;B e72mia/3 (ILt)q;B +(1Lt)q:8 +(1Lt)-q;8
(IMt)q;B e~2mi(qm-pp)/3m (IMt)q;B e-2mi(Bm-Bp)/3m (IMt)q;B ’(IMt)-q -
(Itt)q;B e-2mi(q-B)/3 (Itt)q;ﬁ +(Itt)q;8 _(Itt)—q;‘B
(Ift)q;B e-27iq/3 (Ift)q;ﬁ e-2miB/3 (Ift)q;s _(Ift)'q;‘B
(1.5q;p H1 g, e 2mia/3 (1 6y, o H1H gsp
(IMf)q;B o+2mifp/3m (IMf)q;B e-2mi(qmtpm-Bp)/3m (IMf)q;B '(IMf)-q -8
(Itf)q;B o+2mip/3 (Itf)q;B e-2miq/3 (Itf)q;ﬁ _(Itf)-q;-s
(Iff)q;B +(Iff)q;ﬁ o 2rilate)/3 (Iff)q;ﬁ '(Iff)-q;-s

3The generating operations C¢s Cg and o are defined in Table III.

bThe subscripts q and B are defined in Eqs. (24-25).

CMolecule-fixed (M), top-fixed (t) and frame-fixed (f) vector components are
defined in terms of the laboratory-fixed (L) components in Eqs. (23).

and frame-fixed axis systems. While the axis systems in a PAM treatment are the same
as the top- and frame-fixed systems used here, the operators in a PAM treatment do
not have precisely the same definitions as those in an IAM treatment.)

For the purpose of constructing contributions to the hyperfine Hamiltonian of def-
inite symmetry species, we shall make repeated use of a convenient but slightly cum-
bersome notation similar to that used for a hyperfine treatment in 2 F electronic states
of Cs, molecules (25). Three linearly independent combinations (specified by a sub-
script @ = 0, =1) of the individual nuclear-spin operators in the top or frame (specified
by a superscript t or f) are defined by

(It)qE Il + e+21riq/312 + 6,721riq/313

(1N, =L + **PL; + e 74P, (24)

Vector components are then specified by a subscript L, M, t, or f, which indicates the
axis system, together with a subscript 8,

(I}_,M,t.f)q;ﬁ = [(It)q]ﬂ
(I{,M.t,f)q:ﬁ = [(If)q]ﬁs (25)

where 8 = X, Y, or Z for laboratory-fixed vector components (L}, and 8 = 0, %1
(i.e., z or x £ iy) for molecule-fixed (M), top-fixed (t), or frame-fixed (f) vector
components. Transformation properties of various vector operators in the notation
of Egs. (25) are given in Table VIII.
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C. The Nuclear-Spin-Overall-Rotation Operator H,,

In a normal point group treatment we would at this point seek, as possible symmetry
allowed contributions to H,,, all totally symmetric products of the rotational and
nuclear spin operators which are linear in both the components of J and the com-
ponents of the I,. In the present treatment, we seek instead all bilinear products, which
can be made totally symmetric by multiplication with an appropriate function of the
internal rotation angle a. Since the trigonometric functions of « all belong to one of
the species E, (i.e., all have 7 = 0), we seek products linear in J and in the components
of the I; which also belong to the species E,,. Bilinear products of J and I; of species
A, can be used with constant coefficients as terms in H,,. Products of species 4, can
be used after multiplication by sin 3«. Bilinear products of J and I; of species E,q can
be converted to the species Eqy (1.€., to 4, + A,) by appropriate multiplication with
cos(ra/m) and sin(ra/m), and thus products of species F,; give rise to two terms
in H,,. (Note that the prescription in this paragraph is essentially a procedure for
counting the number of different bilinear products of J and the I, which can be used
in H,,, and is not a procedure for counting the number of all possible terms in H,,,
since, for example, any 4, term in H,, can be used to generate an infinite number of
others by multiplication with cos 3ra for arbitrary integer values of #.)

There is another question which arises in this counting procedure, namely the ques-
tion of which axis system the vector components should be taken in. In fact, as we
shall see in the next three paragraphs, it does not actually matter; the apparent form
of the operators will change in the various descriptions, but the number of allowed
bilinear products of J and the I, which can be used in H,, will not.

Consider first an H,, operator constructed entirely from molecule-fixed vector com-
ponents. We sce from Table VII that I'(J) = 4, + E,; and that I'(1,, . _4) = 24,
+ 2 E, plus the six symmetry species in the last four rows of the “MOLECULE”
column. T'(J) X I'(1; ;... _¢) then contains the following species with 7 = 0: 24, + 2 Eyo
+2FEy0+2E, pot Eypg + Eniopo. The species A, 1s contained in this set four times,
and the corresponding four operators can be used directly in H,; i.e., they can be
used with constant coefficients. By multiplication with suitable functions of «, 14
other 4, terms can be constructed, so that the total number of different terms for H,,
is 18 (where two terms are not considered to be different if they can be written in the
form g(a)- f(e, I;, J) and h(a)- f(a, I;, J)).

Consider next an H,, operator constructed entirely from top-fixed vector compo-
nents. Again from Table VII, I'(J) = A, + E,,;; and I'(L; 5 . ) = 24, + 2 E,,; plus
the seven species in the last four rows of the “top” column. T(J) X T'(I;, .
contains the following species with 7 = 0: 24, + 5Ey + 3E,5. The seven A4, terms
can be used directly in H,, and 11 other 4, terms can be constructed by multiplication
with suitable functions of «, so that a total of 18 terms for H,, is again obtained.

The same total of 18 is obtained if, as another example, we use molecule-fixed
components for J, top-fixed components for the I; when i = 1, 2, 3, and frame-fixed
components for the I; when i = 4, 5, 6.

Even though the total number of allowed operators in H,, does not depend on the
axis system chosen, some choices are more convenient than others for a given purpose.
Thus, to compare H,, for H;C-SiH; with H,, for the protons in PHj;, for example, it
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would be convenient to use top-fixed components for J and the I; when i = 1, 2, 3
and frame-fixed components for J and the I; when i = 4, 5, 6. H,, for H;C-SiH; will
then separate into two parts

H, = H', + H}, (26)

one part for the protons in the top, the other for the protons in the frame, and each
of these parts should individually have the same form as H, for the protons in PH;.
On the other hand, when taking matrix elements in an IAM basis set, it would be
convenient to use molecule-fixed components for all vector operators, since then the
conversion of the nuclear-spin angular momenta to laboratory-fixed components in-
volves direction cosine matrix elements which are functions only of the rotational
angles. Table IX presents the symmetry-allowed contributions to Hy, in both of the
forms described in this paragraph.

The five a-independent terms for either H', or H{ which can be obtained by setting
n = 0 on the right-hand side of Table IX correspond to the five spin-rotation operators
allowed for the protons in a C3, molecule like PH; (27). In practice, consideration is
usually limited to the three such operators having selection rules AK = 0, £2 (i.e., to
the operators in the first, second, and fifth rows of either H!, or Hf) by using a
diagonal spin-rotation coupling tensor (27, 28). The local environment of a given H
atom in PH; actually has only a plane of symmetry, however, so that for an H atom
lying in the xz plane, for example, the two additional products J,./, and J.I,, which
have selection rules AK = %1, are also permitted by symmetry considerations to occur
in H,,. Spin-rotation (and spin-spin ) hyperfine matrix elements off-diagonal in K are
described in some detail in the Appendix of Ref. (3).

The spin-rotation operators in Table IX can be converted to a form convenient
for AJ = 0 matrix elements in a basis set containing nuclear-spin functions charac-
terized by laboratory-fixed projection quantum numbers by using the operator
equivalent

(In)g:a(Imdsr = [(IL)g (GIT(IM)s(Im)e /T (S + 1)]. (27)

For AJ = +1 matrix elements, more complicated ladder operator (23) or spherical
tensor (29-32) techniques prove convenient. The procedure developed by Bowater
et al. (30), in which spherical tensor expressions are applied only after the molecule-
fixed components of all vector operators have been converted to laboratory-fixed com-
ponents multiplied by the direction cosine matrix (as in Eqgs. (23) above), is to be
recommended here also (after modification to include the torsional angle «), as an
excellent means for avoiding the introduction of phase-factor and sign-convention
errors when applying standard vector coupling and spherical tensor techniques to
angular momenta obeying commutation relations with the anomalous sign of i (26).
In particular, (1), and Ju here represent three pairs (31, 32) of analogs (¢ = 0, 1)
of S and N in Eq. (9) of Ref. (30), while (I1), and J. represent three pairs of analogs
of S and N in Eq. (30) there.

D. The Nuclear-Spin-Internal-Rotation Operator Hg,

The symmetry species I' of the torsional momentum p, is the same in the mole-
cule-, top-, and frame-fixed axis systems and is given by
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L(p.) = 4,. (28)

Because p, transforms like J., nuclear-spin-internal-rotation interaction operators
can be constructed from the nuclear-spin—overall-rotation operators in Table IX by
replacing (Jum)., (J1);, or (J5), by p., and then making the resulting term Hermitian
([P, %] # 0).

In the intermediate- and high-barrier cases, expectation values of the form
{vKo|p,|vKe) are rather small for low v, i.e., of the order of 0.001, 0.03, and 0.5
for v = 0, 1, and 2 in the molecules of interest in this paper, so that at least for v = 0,
these nuclear-spin-internal-rotation interaction terms can probably safely be ignored.

The nuclear-spin-internal-rotation interaction terms provide a convenient illustra-
tion of the advantages of the IAM system for relatively high-barrier problems. Consider,
for example, spin-rotation and spin-internal-rotation operators of the following form
for nuclei in the top (t):

HIAM = C{’(I}\/I)O;z(pa)lAM + C‘t,(Ii\'I)O:sza (29)
and
Hpam = X (Iin)o.=(Peoam + & (1in)o:2J-
= Etp(]}\/[)O;Z[(pa)IAM + sz] + C_{(I}\/I)O;z-]z
= (I)oz(Pahiam + (€1 + pE7)(T3n)o:2Jz, (30)

where (1')y = (I, + I, + 1), and where the subscripts IAM and PAM on p, refer to
operators as they are conventionally defined in these two systems (/6). From Egs.
(29) and (30) we conclude that

e = (& + pel)
cf = cf. (31)

However, expectation values of the IAM and PAM operators p, are related by the
equation

<(pa)PAM> = <(pa)IAM> + .0<J:>- (32)

Since {(pham)y —> 0 as V3 = oo, we see that {(p.)pam) —> pK as V3 = oo Thus,
there is no clear separation of spin-rotation and spin—-internal-rotation effects in the
PAM system when V3 = oo, in contrast to the IAM system, where a clear separation
does occur.

E. The Nuclear-Spin-Nuclear-Spin Operator H,,

Symmetry-allowed terms in H, can also be constructed using the transformation
properties indicated in Table VIIL It is convenient to divide H,; into three parts,

H, = H\+ HS+ H', (33)

one part for interactions wholly within the top, one for interactions wholly within the
frame, and one for interactions between the top and the frame nuclei. Tables X, XI,
and XII give the symmetry-allowed operators occurring in these three parts of Hy,. If,
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as for Hy, in Section 3C, operators of the form g(«)- f(e, I, Iy and A(a) - f(a, I;, 1)
are not counted separately, we see that there are 15 different operators for H', given
in Table X, 15 for H/, given in Table XI, and 27 different operators for H'! given in
Table XII. As in Ref. (25), it is convenient to try to reduce the large number of
adjustable parameters associated with a general expression containing these operators
by considering only that linear combination occurring in the classical dipole-dipole
(spin-spin) interaction energy expression.

Consider first the classical expression W, describing nuclear spin-spin interaction
wholly within the top. If top-fixed (t) vector components are used, this operator takes
the form

W= giudr Lo L = 3r2(L s r)(rz L) + L Iy = 3r7%(1p 1) (30 1s)
+ Lo L = 3r (e ra ) (- 1), (34)

where g is the nuclear g-factor for the protons in the top, uy is the nuclear magneton,
ry is the distance between protons in the top, r; = r; — r; are vectors from atom j to
atom /, and the final subscript t indicates components taken in the top-fixed axis
system.

Using standard procedures it is possible to express Eq. (34) in a relatively compact
spherical tensor notation (29-32),

Wi = =3giukr?® 27 2 (=1 [ T2, =5) T (2, +95)]1s (35)

i s

where 2’ indicates that j takes the values 2, 3, 1 when i takes the values [, 2, 3,
respectively. The index s takes the usual values £2, =1, 0. There are a variety of sign
conventions in the literature for spherical tensors. We follow Edmonds (29) and relate
spherical tensor components to Cartesian tensor components for two vector operators
r, and r; by the equations

Trarh(za iZ) = +(1/2)(Xa * iya)(Xb x lyb)
Toan(2, £1) = F(1/2)[(xa £ iya)zo + za(Xp £ iV5)]
Trarb(zs 0) = +6?1/2(3zazb — Iy rb)' (36)

Top-fixed components are used in Eq. (34) because the r;; for i, j = 1, 2, 3 are all
constants in the top-fixed axis system, with values determinable from Table I:

ro/ro= +(V3/2)i + (1/2)]
r3/re=—j
rai/ro= —(V3/2)i + (1/2)j. (37)
Components of the tensors 7,;,; occurring in Eq. (35) are therefore also constants,
Ty 2, £2) = —(1/2)0* ¢
Trijrif(2, £1): = 0

Toiprid 2, 0), —6"'/2rf, (38)
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where we define a quantity w,
w = e+21ri'/3’ (39)

which reflects the threefold symmetry in the molecule and which we shall make ex-
tensive use of in the derivations below.

We now convert the nuclear-spin tensor 77;; in Eq. (35) from operators referring
to the spins I; and I, of individual nuclei to the more “symmetrized” operators of Egs.
(24). The latter equations can be rewritten in terms of the quantity w defined above
as

(I, = V3 3 U,
(1N, = V3 2 Uplyis

Up = (1/V3)w*atn=D, (40)

where the matrix U is unitary, and g and # both take on the values 1, 2, 3. Note that
g =1, 2, 31in Eqgs. (40) corresponds to ¢ = +1, —1, 0 mod 3, and the notation of Egs.
(40) is thus consistent with the notation ¢ = +, —, 0 used in Eqgs. (24) and Tables
VIII-XII. Substituting Egs. (38) and the inverse transformation of the first of Egs.
(40) into Eq. (35) leads to an expression of the form

Who= —gludr(® 3 {[37 2@ DU (21 /2) T,(2, 42)

9.9’ /)

+ [3A1 Z; w—q(i—l)—q’(j‘l)](~]/\/g) qur(2, O)

ij
+[37 3 @ TR (2 2) Ty (2, ~2) o (41)
i
It can be seen that 2.}; in Eq. (41) is equivalent to 2, withi = 1,2, 3and j = i + 1.
Carrying out these operations yields

Wgs = _gtzﬂ%lrt_B Z {(aq’,Z—q)wq_l(_l/2)qu’(2, +2)

qa4q
+ (8g73-0)0 (=1/V6) Tpg(2,0) + (8g7a-g) @™ (=1/2) Tyqr(2, =2) }, (42)

where g and ¢’ take on the values 1, 2, 3 and the 6 functions only require equality of
their arguments modulo 3. Equations (36) and (42) show that the six operators in
rows 6-8 of Table X are not present in the classical operator for spin-spin interaction
within the top. (We note in passing that slightly different forms for. Eq. (42) are
obtained ifwe setj =i+ 1, ori = j + 1, or use an average of the two. The Hamiltonians
analogous to Eq. (34) corresponding to these three possibilities are all equal, however,
so that no changes in the final results arise, as long as one consistent choice is main-
tained.)

We next convert the nuclear-spin operators from top-fixed (t) components to lab-
oratory-fixed (L) components, since nuclear-spin basis functions are normally chosen
to be characterized by laboratory-fixed projection quantum numbers. It is convenient,
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however, to pass from (t) to (L) through the intermediate stage of molecule-fixed (M)
components. Equations (23) indicate that the second-rank spherical tensor components
defined in Eqs. (36) transform as follows,

T(2, s)t — e+isap/me—isaT(2’ S)M
T(2, s)r= e™'™T(2, $)m, (43)

so that conversion from top- or frame-fixed components to molecule-fixed components
is relatively easy.

It is convenient to change from molecule-fixed to laboratory-fixed Cartesian com-
ponents of the nuclear-spin angular momentum operators in the products of interest
using the relation

(IM)gs( Im)grgr = 2 SeSern'(IL)g;8(IL)g" 8, (44)
B,B’

where Sgp represents the direction cosine matrix in the first of Eqs. (23) and is thus
not a function of a. Since we restrict our attention to AJ = 0 hyperfine interactions
in this paper, we desire an operator equivalent for Sgp Sy 5 analogous to the operator
equivalent (Ji)p(Jm)s/J(J + 1) used for Sgp in Eq. (27). Because the nuclear-spin
operators occurring in the spin-spin interaction Hamiltonian can be written as com-
ponents of a symmetric traceless tensor, it is sufficient to use an operator equivalent
for AJ = 0 from Eq. (3) of Ref. (33):

(1/2)[SsSss + SppSps] — (1/3) 0088 = [6/J(J + 1)(2J — 1)(2J + 3)]
X [(1/2)(Jgdpr + Jp-Jg) — (1/3)dppd?]
X [(1/2)(Jgdg + Jgdg) — (1/3)8g50°].  (45)

For AJ = *=1 and *2 matrix elements, more complicated ladder operator methods
(23), or spherical tensor techniques (29-32) applied directly to Eq. (44), prove con-
venient. In the present case we apply the spherical tensor definitions of Egs. (36) to
Eq. (44) after substitution of Eq. (45) and obtain

Ty (2, £2)m = [J2Im[3/J(J + 1)(2J — 1)(2J + 3)]

X T2 A1) Tio(2, +5) T (2, =)L

5

Ty (2, £)m = FJJ. + LI I[3/J(J + 1)(2J — 1)(2J + 3)]
X [2 (_I)STrot(z’ +S)qu’(2a _s)]L
Ty(2,0)m = \76[J§ —(1/3)IIu[3/J(J + DT — 12T + 3)]

X2 A1) Tean(2, +8) Ty (2, =5)]L, (46)

where T,(2, §)1.1s a second-rank tensor constructed from laboratory-fixed components
of the total angular momentum J according to Eqs. (36).
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Substituting Eqgs. (46) and the first of Egs. (43) into Eq. (42), summing over g and
¢’, and making use of the fact that T,;-(2, s) = T,,(2, 5) for the nuclear-spin operators
in Eqgs. (40), we obtain finally for the classical spin-spin interaction energy within
the top

Wi = giukr’[3/J(J + 1)(27 = 1)(2J + 3)] Z (= 1) Tra(2, +5)0

XA(1/2)[J3Ime 2 /M e Ty (2, =s)1 — To-(2, —5)L]
+ (72 = (1/3)3Iml Too(2, =) — T4-(2, —$)1]
+ (1/2)[J2 e /e 2o T__(2, =s)1 = To+(2, =$)11},  (47)

where the +, —, 0 subscripts on the nuclear-spin operators T,,- match those in Eqgs.
(24), (25) and Tables VIII-XII, e.g.,

To-(2, 2)1 = (1/D)[U)ox + (T o) [(F1)-x + i(TL)~ 7] (48)

An analogous procedure can obviously be carried out for the classical spin-spin
interaction energy W £ within the frame,

WE=giukr? e Is — 3re?(Les ras)(ras- Is)
+ 15+ Is — 3r77(Xs 1s6) (rs6+ Is) + I Ly — 3ri2(Xs - rea)(rea- L)]r,  (49)

except that here it is convenient to use frame-fixed (f) vector components so that the
r; are again constants,

ras/re = +(V3/2)i — (1/2)]
Isg/re= 1]
rea/re = —(V3/2)i — (1/2)], (50)

where 7;is now the proton-proton distance in the frame. The analog of Eq. (47) for
W f becomes

Wi = gtukr P [3/J(0 + D2 = 1)(2J + 3)] 2 (—1)Teo(2, +5)0

X {1/ 2)[T3 Ime ™M T__(2, —s)L — To(2, —$)1]
+ 12— (1/3)I Il Too(2, =s)L — T4 (2, —$)1]
+ (1/2)[J2Ime ™™/ T (2, —s)L — To-(2, —=s)L]}. (51)

When the analog of Eq. (42) for W[ is written, using frame-fixed components for
the nuclear-spin operators, it is seen that the six operators from rows 6—8 in Table X1
do not occur in W 1.

The classical energy expression W' for nuclear-spin-spin interactions between the
top and frame,

W =+ ggrudrid [l Ly — 3riZ (1 1) (114 L)
+ Lo Xs — 3rid (L r26) (126 Ig) + L3+ Is — 3775 (13- 135) (135 - Is)]
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+ &gk (1 - Is — 3rid (L - 1ys)(rys- Is)
+ L0y = 33 (L 1oa)(r2a L) + I3+ Lg — 3713 (13- r36) (136 - L)
+ gigeukerig (I I — 3rid (1 - rig) (16 L)
+ Lo Is = 3rig(Tas rps)(ras - Is) + Ig- Lo — 3r@ (T3« r3g) (raa - L)1, (52)

is considerably more complicated to treat than W, or W [, since there is no possible

choice of coordinate system in which all proton-proton distances r; remain constant.

In what follows, we shall arbitrarily choose to examine W/ in detail in a frame-fixed

axis system.
We first write the analog of Eq. (35) as

Wﬁf = _3gtgf#12\1 Z (-1 2 ri;S[Try'rij(z, )T (2, +5)]r, (53)

i

where i = 1,2, 3,j=4,5,6,s = %2, 1, 0, and the final subscript f indicates
components taken in the frame-fixed axis system.

We consider next the proton-proton vectors r;;. Since the first subscript i = 1, 2, 3
is always chosen from the top, and the second j = 4, 5, 6 is always chosen from the
frame, and since frame-fixed vector components are used, we can write

[rylr=S""(e, 0,0)-[a?], — [}, (54)

where components of the vectors [a], and [a]; are given in Table I. Equation (54)
leads immediately to various useful relations between the quantities r;;. For the squares
of the distances occurring in Eq. (53) we find

ris(@) = B3s(@) = ris(a) = (a})’ + (a9)* — 2(al.)(dh:) — 2(af,)(dly)cos
ris(a) = (@) = ris(a) = rig(a — 27/3)
= (a))? + (ad)? — 2(a?.)(ds.) — 2(ad,)(ady)cos(a — 27 /3)
r%é(a’-) = r%5(a) = 1'%4(0() = l'%4(01 +2%/3)
= (a9)? + (ad)® — 2(a1.)(as;) — 2(ad ) (ady)cos(a + 27/3). (55)
For the tensors 7,;,; occurring in Eq. (53) we find
Trana(2, $)e = @ Tgn6(2, $)s = 0 Tpasas(2, 5)s
Trsns(2, )¢ = @ Taana(2, $)r = @ Thee(2, 5)s
Triene(2, $)r = @ Thsns(2, $)p = @ " Tr3a3a(2, $)y- (56)

Substituting Eqgs. (55) and (56) in Eq. (53) after using Eqs. (40), we arrive at the
analog of Eq. (42),

Wisf = _glgfl"'lz\l z (_l)s Z 6q’,qfs{ [r1>45 Trl4rl4(2v "S)

q4q

+ @ 775 Trsns(2, =) + @978 Trene(2, —=$)1 T4 (2, +5) e, (57)
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where ¢, ¢’ = 1, 2, 3, and the & function only requires equality of its arguments modulo
3. Equation (57) differs slightly from Eq. (42) in that the components of the tensors
T.;; have not yet been explicitly evaluated. Equations (36) and (57) show that all
operators from Table XII are present in Wif.

The conversion from frame-fixed components to laboratory-fixed components for
the nuclear-spin tensors 7,,- in Eq. (57) can be carried out using the second of Egs.
(43), and then Eqgs. (46), to yield

Wi = —ggm&[6/J(] + (2] = Q2T+ 3] T (~1) e beri

X Trot(za +S)M Z 5q’,qu[rT4$5 Trl4r14(25 _S) + ws—quSS TrlSrlS(zs "‘S)
qq’

+ @ Tnons(2, =)1e 2 (=) TTar(2, +1) Toqr (2, =1L, (58)

where Eq. (58) is applicable only for AJ = 0 matrix elements, and where the spherical
tensors Toe( 2, $)m involving the molecule-fixed components of the angular momentum
are best evaluated after converting to normal ladder operators (using Eqgs. (36)), to
avoid difficulties arising from the anomalous sign of 7 in the commutation relations
of the components of [J]y.

The tensors 7,;,1; in Eq. (58) can be evaluated for j = 4, 5, 6 from Eqgs. (36) and
(54).

Tojnf(2, £2) = (1/2)[e**(aly) — «*V™9(d3x)])’

(1/2)[e%(af,)? — 2070 Ve (a) ) () + o 7 (dix)?]

T2, + 1) = Flee(a) — oV I(d)]l(ah) = ()]

Trgi(2,0) = V6(1/2)[(. — af.)> — (1/3)ri]], (59)

where we have made use of the fact that z,4 = z;5 = z;4. Substitution of Egs. (59) in
Eq. (58) yields the final expression for Wi,

4. APPLICATION TO EXPERIMENTAL DATA

In this section we use the hyperfine interaction formalism derived in the previous
section to discuss various observed and unobserved anticrossings from the molecular
beam investigations. The avoided crossings of interest here fall into two categories
which, in the language of Refs. (5-8), are called “barrier” anticrossings when A] K|
= 0 and “hyperfine” anticrossings when A|K| = 1 or 2. In both cases it is hyperfine
matrix elements off-diagonal in the vibration-rotation—torsion symmetries of the
wavefunctions that provide the coupling between the anticrossing levels. We first discuss
the calculation of matrix elements in general and then discuss in some detail the
CH;SiH; (5) and CH;SiF; (6) molecules, since they have been subjected to the most
thorough experimental study.

A. Matrix Elements of the Nuclear Spin-Spin Operators

The wavefunctions in Table XIII are written in the high-field representation ap-
propriaie (3) to the anticrossing experiments. The levels are characterized by the
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quantum numbers (J, K, o, m;, I,, M,, Ir, M;). A relatively strong electric field is
applied in order to bring the levels involved to their avoided crossing. The wavefunc-
tions in Table XIII do not belong to one of the *™I" species 4; or 4, allowed by the
Pauli exclusion principle for the group G 5. In zero external field these 4, and 4,
wavefunctions occur in nearly degenerate pairs, and each such pair is fully mixed by
the strong Stark effect to generate a sum and difference function. It is these 50:50
mixtures which are listed in Table XIII. The levels with K = ¢ = 0 are exceptions; in
this case the symmetry is 4; or A,.

A small magnetic field (~2 mT) is assumed for two reasons. First, it is possible
(3) to have two distinct levels which are degenerate with respect to the Stark energy
but which can be coupled by the nuclear hyperfine interactions. For these special cases,
the representation in Table XIII breaks down in zero magnetic field. Fortunately, in
almost all these cases the Zeeman energy lifts the degeneracy and simplifies the analysis.
Second, the treatment of the avoided crossings generally assumes that the transitions
occur within a series of separate two-level systems. In zero magnetic field, multilevel
systems can arise, such as those in the Stark-hyperfine hybrids discussed in Ref. (3).
In almost all of these special cases, the Zeeman energy reduces the multilevel systems
to two-level problems and so simplifies the analysis. The Zeeman splitting is of par-
ticular importance because the special cases which can arise when |K| = |m,| = |

TABLE XIII

Complete Torsion-Rotation-Nuclear-Spin Wavefunctions for the States of H;C-SiH; Shown in Fig. 2 of
Ref. (5) and the States of H;C-SiF; Shown in Fig. 2 of Ref. (6)

[ K o T mp JEr> T30, K, M55 [PEr s T, Mo | DE T T, Mo

]1,+1,71,Eq,£1>8 |tEm+P’0;>|rEp1i;1,1l,t1>|ntEm1i;1/2,Mt>|nfE01i;1/2,Mf>
[1,71,%1,Ep,£1>3 |*En-p, 07> | TEp153 1,71, 21> | P By 1 51/2,M, > PEAy53/2,Mp>
[1,%1,%1,E,,%1>8 |"Eny-p, 09> | TEpya3 L, 71, F1> [P0y 1 51/2,M0> | PEA 53/2,Mp>
[1,71,0,E,¢1>3 [*Epgs>{FEp15s 1,71, £15|20A)33/2,M0> |PFEgy 45172, Mg
[2,£2,%1,Ey,£25P |“Ems2p, 057 | "B2p, 2452542, £2> | MCByy 4 51/2,M0>|PEA 5372, 1>
|2,£2,£1,Eq,225P |%Epe2p,0:” | "B, 2432522, 225 | PPEy) £51/2, > | MFEg 551/2,Mp>
12,22,0,E,22>P [tEgp, 057 | TEpp, 2432, £2,42> | MCA133/2, M, > | M FRgy 1 51/2,Mp>
{2,0,£1,E,,05P |CBpy, 04> 174152,0,05 [P Ry 231/2,M> |PFRg ,31/2,Mg>
12,0,0,A;,05P |tAl>lrA1;2,0,0>|ntAl;3/2,Mt>]an1;3/2,Mf>

2In the notation of Fig. 2 and Table I of Ref. (5). Note that these wave
functions in Ref. (5) do not contain nuclear spin factors, and that T
corresponds to the torsion-rotation symmetry species.

In the notation of Fig. 2 and Table 2 of Ref. (6). Note that these wave
functions in Ref. (6) do not contain nuclear spin factors, and that T
corresponds to the torsion-rotation symmetry species.

CIn the notation of the present paper. The left superscripts t, r, nt and nf
indicate IAM torsional and rotational functions, and laboratory-fixed nuclear
spin functions for the top and frame nuclei, respectively. I and Ig
represent the total spin angular momentum of the top and frame, respectively.
Note that the same nuclear spin functions use here are suitable for use with
the torsion-rotation wavefunctions defined in Refs. (3) and (6).
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have been studied experimentally. For the fields assumed here, the Zeeman energy is
much smaller in magnitude than the Stark energy, so that the 50:50 4; + 4, mixtures
in Table XIII still form an appropriate basis.

Matrix elements of various operators in the basis set of Table X1II can conveniently
be separated into a torsional factor, a rotational factor, and a nuclear-spin factor,
which we now comment on in turn.

The torsional factors were evaluated numerically, using a previously written com-
puter program. The torsional wavefunctions used were obtained for each (s, K) pair
by diagonalizing the zeroth-order Hamiltonian matrix (5) set up in the IAM free rotor
basis (5). The non-totally-symmetric part of a given exponential function of « in Eqgs.
(47), (51), and (58) is required to give nonzero matrix elements between torsional
functions of different symmetry species.

Because the molecules considered here all have relatively high barriers, it is also of
interest to calculate the torsional factor algebraically, using the high-barrier torsional
wavefunction results from Ref. (12),

3m—1
| Eyory = (3m)~V2 3 =2 tti2midmy, (o /my), (60)
k=0

where Y, (a/m) is a torsional wavefunction localized in the kth minimum. These
functions are like those shown in Fig. 4 of Ref. (12), except that for the present set
of molecules, which have staggered equilibrium configurations, the minima occur at
(a/m) = (k + 1/2)(2x/3m), rather than at k(27 /3m) as in that figure, and each
function | E,¢. ) has thus, for convenience, been multiplied by an extra phase factor
e*™ir/3m In the simplest approximation, one can (i) consider only nontunneling con-
tributions to the torsional matrix element of a given operator (an approximation
which may be expected to introduce fractional errors of the order of the tunneling
splitting divided by the torsional frequency), and (ii) use a delta function for the
ground state vibrational wave function localized in each minimum. If we use the high-
barrier torsional functions of Eq. (60), and if further the delta function approximation
is made, then the torsional integral can be obtained simply by evaluating the appropriate
part of the integrand at one of the equilibrium configurations. For the molecular
structures (13, 34) and barrier heights (5, 6) employed, values for a given matrix
element evaluated by the two procedures differ by only a few percent.

In the rotational factor, the reduced matrix element for 7.,,(2);, can easily be de-
termined (29) to be

(NTwo DTy = [(20 — D2J(2T + 1)(2J + 2)(2J + 3)/24]"2. (61)

For the nuclear-spin tensors, the reduced matrix elements can also be determined
by standard procedures. The tensors T,,/(2, 5). (for s = =2, —1, 0, +1, +2 and fixed
g, q') occurring in Eq. (47) (i.e., in W) are constructed from products of laboratory-
fixed components of the vectors (Ii ), and (11 ),-, and we find the following nonzero
reduced matrix elements,

(MAy; 372 Too(2) ™45 3/2) = +(30)'/2
(™Ay53/20| Te=(2) 1™ 4,3 3/2) = —(30/4)1/2
<mA1; 3/2HT¢,¢(2)”mEmlr§ 1/2> = +(15)1/2
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(MA4153/20To(2) of Tog(D ™ Epns; 1/2) = —(15/4)112
(MEpn=; 1720 T c(2) ™45 3/2) = —(15)'/?
("Epmix; 1/21To4(2) or Tuo(2) ™4y 3/2) = +(15/4)'2. (62)

Similarly, the tensors T,,/(2, s); occurring in Eq. (51) for W { are constructed from
products of components of (If), and (If),, and we find nonzero reduced matrix
elements given by Egs. (62) with nt = nfand E,,,;. = Eg=.

The tensors T,,(2, r), occurring in Eq. (58) for W are constructed from products
of components of (I} ), and (I ),-. Since in the basis set of Table XIII, nuclear spins
in the top are not coupled to nuclear spins in the frame, it is necessary to express the
second-rank tensor operators 7,,-(2, +r)1 in Eq. (58) in terms of first-rank tensors
acting on either the spins in the top or the spins in the frame (see Eqs. (40)). Matrix
elements of the tensor operators 7,,/(2, r);. in Eq. (58) thus take the form (29)

T ML Te M [ T (2, 1) | ™5 M) [T M )

= 2 (1’ m, 19 r—= m| 1’ 19 29 r)<mrl; I{M{qu(ls m)L|ntF; 11M1>

m

X (TS I M| Ty (L, r — m) 1" LM . (63)

where the operator 7,(1, m) in the first matrix element on the right of Eq. (63)
contains only nuclear-spin operators for atoms in the top and the operator T,(1, r
— m) in the second matrix element contains only spin operators for atoms in the
frame. Phase factors for spherical tensors of rank 1 (29) can be defined by an analog
of Eqs. (36),

T(1, +1) = F(1/V2)(x + iv)
T.(1,0) = z. (64)

Nonvanishing reduced matrix elements of the first-rank tensors required to evaluate
Eg. (63) when operators and wavefunctions apply to the top are then as follows,

<“‘I‘; I Ty ™T; I> = +[J(I+ 1) 21+ 1)]'/?
(A3 320 T D)™ Epies 1/2) = V6
(M Epes 120 Te(1) ™ 4,5 3/2) = +V6
("Epzs 1/ 20T D) | ™ Epns; 1/2) = = V6. (65)

Nonvanishing reduced matrix elements required when operators and wavefunctions
apply to the frame are given by Egs. (65) with nt = nf and E,..;. = Eo+.

Because of various phase conventions, reduced matrix elements defined in connec-
tion with spherical tensors are often not Hermitian. Thus, since the spherical tensors
defined in terms of r in Egs. (36) and (64 ) satisfy Eq. (5.5.2) of Edmonds (29) when
r is replaced by any of the operators considered in this paper, their reduced matrix
elements in Eqs. (62) and (65) satisfy Eq. (5.5.4) of that reference, i.e.,

(YU ) = (=1 I R 1y ). (66)

Matrix elements for nuclear-spin operators obtained using Eqs. (62) and (65) are,
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however, consistent with matrix elements for the same operators obtained using the
reduced matrix elements in Egs. (53) of Ref. {25), which are defined there 10 be
Hermitian, as is commonly done when using ladder operator techniques (23, 25).

Matrix elements Hy, of the operators in Eqgs. (47), (51), and (58) can now be
evaluated by standard spherical tensor procedures (29). Since the molecular geometries
and nuclear magnetic dipole moments are known, there are no adjustable parameters
in this evaluation. ( The electron-coupled contribution is neglected.) Various matrix
elements are collected i Table XIV. Twelve anticrossings have been selected that
illustrate the anomaly discussed in Section 1. The first six are hyperfine anticrossings
in CH;SiF; with K = +2 <> 0. Rows 7 through 9a refer to barrier anticrossings in
CH;SiH; with K = =1 < F1. Rows 10 through 12a refer to a similar set of barrier
anticrossings in CH;3SiF;, but with J = 2 instead of J = 1.

In Table XIV, rotational and torsional quantum numbers for the two states partic-
ipating in the avoided crossing are given in columns 2-6 and 7-11, respectively. Cor-
responding nuclear-spin projection quantum numbers for top and frame nuclei are

TABLE XIV

Matrix Elements? for Various Anticrossings

#9 JUR' o' I'my' J K o T mgy M' Mg' My Mg Heel®  TIcaicd  Iops®
1 2+2 O0Ej #2 2 0#1E, 0 #3/2 Mg #1/2 M 7.706 t  4.0000 4.7
la 2+2 0E; 2 2 0FLE, 0 33/2 #1f2 71/2 21J2 0,497 t5  0.1112 u
2 22 F1Ep; £2 2 0FLE, O M. ¥3/2 Mg £1/2 2.460 £ 2.8932 2.4
2a 22 F1Ep 22 2 0%l E, 0 3172 33/2 #1/2 71/2 0,497 tf  0.1112 U
3 22321 E322 2 0:1E, 0 ¥1/2%1/2$1/2 x1/2 0.156 tf 0.0083 No
3a 2211 E3$2 2 0%l E, 0 =1/2%1/2£1/221/2 0.040 tf 0.0005 No
4 22 F1Ey; 2 2 0 0A; O F1/2 Mg #3/2 M 7.706 £ 8.0000 8.5
5 242 0E 2 2 0 0A; 0 M F1J2 M, 32 2,460 £ 5.7864 3.0
6 2321 E3+2 2 0 045 0 £172 £1/2 32 £3/2  0.431 tf  0.1120 No
7 13l ¥ Ey+l 131 0E;+l #1/2 Mg #1/2 M 4.682 t  2.5740  2.70
7a. 1l 71 E3 1 11 O0Ey ¥l +1/2 ¥1/2 #3/2 #1/2 0.814 tf 0.0693 No
8 1l ¥l Byl 1%l F1E;#l Mg #1/2 My $1/2 1.920 £ 0.5552 0.51
82 1 :l 7l E3 £l 1 £l #1 Ey 71 3172 £1/2 £1J2 £3/2  0.814 tf  0.0693 No
9 12l #1 B #1 1 ¥1 0 By #1  +1/2 #1/2 £1/2 £1/2  0.227 tf 0.0122 No
9a 1+l t1 Ey £1 1l 0 Ey ¥1  £1/2 ¥3/2 #3/2 ¥1/2 0.705 tf  0.0695 No
10 21 71 B3 #1 271 0 Ejtl #£1/2 Mg £1/2 M 3.337 £ 3.8553  Yes
10a 2 +1 ¥1 E3 £l 2 #1 0 Ey ¥1  #1/2 ¥1/2 #3/2 #1J2 0.519 tf 0.1212 U
11 2 #1 71 E3 #1 2 71 ¥1 By +1 M, +1/2 My £1/2 1.065 f 0.7264  Yes
lla 2 1 51 B3 £1 2 1 #1 E; 71 3172 £1/2 $1/2 £3/2 0.519 tf  0.1212 U
12 2 #1 £1 Ep £} 2 %1 0 Ey #1  #1/2 1/2 £1/2 +1/2 0.144 tf  0.0212 No
12a 2 ) 41 Ep #1 2 +1 0 By 1  +1/2 ¥3/2 £3/2 71/2  0.450 tf 0.1220 No

2Rotational and torsional quantum numbers for the two states involved in the matrix
element of a given row are given in columns 2-6 and 7-11 in the notation of Fig. 1 and
Table I of Ref. (5). Laboratory-fixed top and frame nuclear spin projection quantum
numbers are given in columns 12-1i5.
Arbitrary number for convenient reference. Matrix elements in rows 1-6 are for
CH3SiF3 and correspond to the avoided crossings shown in Fig. 2 of Ref. (6). Matrix
elements in rows 7-9 are for CH4SiH3, and correspond to the avoided crossings shown in
Fig. 2 of Ref. (5). Matrix elements in rows 10-12 are for CH3SiFy (6). Quantum
numbers indicated in rows la, 2a, etc. represent alternative Amy and/or Ao assignments
for crossings in the corresponding rows 1, 2, etc.
CThe symbol t (top), f (frame) or tf indicates a matrix element Hge caleulated from Eq.
(47), (51) or (58), respectively.
Fraction of the full intensity available, as calculated from Eq. (67).
©0bserved (Yes), unobserved (No), and untested (U) lines, or arbitrarily normalized
relative intensities within a group, if available.
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given in columns 12-15. The label tf in the column headed | H| indicates rows where
matrix elements of W, in Eq. (47) and W [ in Eq. (51) are both zero for any choice
of nuclear-spin projection quantum numbers M,, M, M., M;; for these rows nonzero
contributions are only possible from W in Eq. (58). Furthermore, if several values
for the nuclear-spin quantum numbers in these rows lead to nonzero matrix elements,
only the set giving the matrix element of maximum absolute value is shown. The
labels t or fin the column headed | H,,| indicate rows where contributions are possible
from H, or HY, respectively, in addition to contributions from H''. Since contri-
butions from H'l turned out to be significantly smaller than those from H', or Hf,
only matrix elements for the latter two operators are given. For such matrix elements,
either M, or M; does not change.

All rows but three in Table XIV are associated in pairs, corresponding to a simul-
taneous change in sign of the quantum numbers in the K, ¢, and »; columns. (The
exceptions are rows 4, 5, 6, for which K = ¢ = m; = 0.) For each of the pairs in rows
7 through 12, the two assignments correspond in a magnetic field to two distinct two-
level problems. For each of the pairs in rows 1 through 3, there arise (for specific sets
of the nuclear-spin quantum numbers) three-level systems which cannot be reduced
to two-level problems by applying a magnetic field. However, for each such case in
rows 1 and 2, the coupling between two of the three levels involved dominates. Thus,
with the possible exception of some of the magnetic components in the pair (3, 3a),
the transition probabilities of interest can be calculated using a suitable two-
level model.

The large AC Stark effect associated with the permanent dipole moment of sym-
metric-top molecules introduces important modifications (/5) in the standard two-
level problem (10), so that when the avoided crossings are characterized by interaction
matrix elements below a certain threshold, the maximum transition probability in a
molecular beam electric resonance experiment drops below unity. For the CH;SiF;
measurements (6) considered here (6.2-cm-long C-field ), unity transition probability
can be achieved only when the energy separation ». = 2| H,,| at the avoided crossing
is greater than vy, = 7.6 kHz (15); for the CH;SiH; measurements (5) (3.0-cm C-
field), v, = 15.8 kHz. If . < vy, the maximum possible transition probability is
given by (15)

Sinz[(VC/Vmin)(ﬂ'/z)] = Sinz[(}{s.s\/‘}min)"rL (67)

Since the minimum energy separation at the avoided crossing is twice the interaction
matrix element, we have replaced (v./vmin) by 2(H,/vmin) On the right of Eq. (67),
where H represents any of the nuclear spin-spin matrix elements of Eq. (47), (51),
or (58).

Column 17 of Table XIV gives a calculated value (I ,.) for the molecular beam
electric resonance relative signal intensity. This value represents a sum of contributions,
one from the hyperfine matrix element actually shown, plus others from hyperfine
matrix elements characterized by other possible sets of nuclear-spin projection quantum
numbers. For example, I, in row 1 is simply four times the value 1.0 obtained when
| H,,| = 3.8 kHz. The factor of 4 arises from the upper and lower sign choices indicated,
and from the two additional choices of M} = M; = +4. I, in row 5 is eight times
the value obtained when | H,,| = 2.460 is substituted into Eq. (67). The factor of §
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arises from the upper and lower signs indicated, and from the values of M| = M, = +3
and +3. I, in row la involves twice the sum over two different | H,,| values, etc.
Adding the intensities together implies an instrumental linewidth large enough to
encompass any splittings caused by the small magnetic field mentioned earlier. For
smaller instrumental linewidths and/or larger magnetic fields, the transitions in any
given row may split into a number of resolvable components, though the details of
such splittings depend on the nuclear-spin quantum numbers in the row and on the
molecule involved. If the magnetic field and transition are such that only one two-
level system in a given row falls within the instrumental linewidth, and indeed if this
is the two-level system of maximum intensity in that row, then it is appropriate to
discard the summed intensity entry in column 17, and to use instead the one-transition
relative signal intensity obtained by substituting | H,,| from that row into Eq. (67).

B. Neglect of Nuclear Spin-Rotation Interaction

It is difficult to calculate the relative contributions of spin-rotation and spin-spin
interactions to the matrix elements giving rise to the observed avoided crossings, because
the magnitude of the relevant spin—rotation coupling constant cannot be estimated a
priori to sufficient accuracy. However, arguments can be advanced which suggest that
spin-rotation interaction can be neglected in the present discussion of observed and
unobserved avoided crossings. For rows 1-6 in Table XIV, Am; = x2. In general
| Amy| < 1 for a spin—-rotation term in the Hamiltonian matrix, so that only the spin—
spin interaction can contribute to rows 1-6. For rows 7-12, an assignment with Am;
= 0 is possible, and this argument does not apply. However, both for CH;SiH; (5)
and CH;SiF; (6), it was found that anticrossings for which 3m3 — J(J + 1) = 0 could
not be detected, whereas corresponding anticrossings for which 3m3 — J(J+ 1) # 0
could be easily observed. Since spin-spin matrix elements vanish when 3m3 = J(J
+ 1}, while spin-rotation matrix elements do not, this observation suggests strongly
that spin-spin effects dominate spin-rotation effects when both are present (at least
for the anticrossings which were detected). We thus confine attention in what follows
to spin-spin interactions only.

C. Previous Observations in CH;SiF; and CH;SiH;

The status, before the present work, of experimental observations with regard to
the 12 anticrossings in Table XIV is specified in the last column of Table XIV. In this
column an avoided crossing is characterized as observed (Yes), unobserved (No),
untested (U), or by relative intensity information where available. Each U that occurs
refers to an alternative assignment for an anticrossing characterized as observed. For
these cases, the choice between U and Yes is based on the calculations presented here,
rather than on magnetic field studies of the type discussed in Refs. (5), (6).

Figure 2 of Ref. (6) illustrates four observed (heavy dots) and two unobserved (no
dots) “hyperfine” avoided crossings between K = +2 and K = 0 levels for J = 2 in
CH;SiF;. Because no magnetic studies were carried out for the anticrossing between
I = E; and T = E,4, the assignments given in rows 2 and 2a could not be distinguished
at that time, and assignment 2a was selected in Fig. 2 and Table 2 of Ref. (6). In view
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of the intensity calculations in Table XIV, we conclude that the earlier assignment
should be changed to that in row 2.

It can be seen from the relative intensities given for the observed transitions in rows
1-6, that stronger lines correspond to larger values of I.,;c, but that the ratio of observed
to predicted values ranges from 0.5 to 1.2. These discrepancies between predicted and
observed relative intensities presumably arise from the difficulties of making good
intensity measurements, particularly since the spectra examined for Table XIV were
originally recorded without any intention of determining accurate relative intensities.
In addition, the effects of field inhomogeneities have not been taken into account. It
is nevertheless satisfying to note that the unobserved avoided crossings are predicted
theoretically to be considerably weaker than those actually observed.

Figure 2 of Ref. (5) illustrates two observed (heavy dots) and one unobserved (no
dot) “barrier” avoided crossing for the J = | K| = 1 states of CH;SiH;. These crossings
correspond to the matrix elements in rows 7-9 of Table XIV, and were chosen for
discussion here because both careful magnetic studies and careful searches for the
missing crossing were carried out.

In the Zeeman studies described in Refs. (3, 5, 6), the behavior of an avoided
crossing when a magnetic field is applied allows one to distinguish between assignments
with Am; = £2 and those with Am; = 0. For these two types of anticrossings, the
spectral lines are, respectively, split and unaffected by the Zeeman effect. Because the
observed spectra were not ‘“magnetically active,” the Am, = +2 assignments, corre-
sponding to rows 7a and 8a, were experimentally rejected (5) in favor of the assignments
in rows 7 and 8. From Table XIV we see that signals from the rejected mixing mech-
anisms are expected theoretically to be only 3% of the stronger observed signal.

Anticrossings of the type specified in rows 9 and 9a were the most puzzling in the
selection rule studies carried out previously. For CH;3S8iH; (5), CH;SiF; (6), and
CH3CD; (7, 8), attempts were made to observe these I'' = E, <> I' = E, anticrossings
for a variety of values of J' = J, n1;, and m;. Studies were carried out both with and
without a magnetic field. None of these attempts was successful. These results were
surprising because the £, < E| anticrossings are so similar to those for E5 < E; (row
7)and E; < E, (row 8), both of which were easily detected. On the one hand, it was
tempting to attribute the difference in detectability to a smaller mixing matrix element;
on the other hand, within the framework of the standard two-level problem (10), the
magnitude of this matrix element is not critical, since the amplitude of the driving
electric field can be adjusted to compensate. The null results for the E, <> E| case for
these three symmetric tops with diverse properties provided the initial motivation for
the current work.

In an attempt (5) to obtain a definitive answer on the observability of the E, « E|
anticrossings, a particularly careful search was carried out, averaging a large number
of scans; the search was unsuccessful. Because Zeeman studies had shown that the
assignment with Am; = 0 was correct for rows 7 and 8, it was assumed at the time
that this was also the case for row 9. It was routine at that time to apply a magnetic
field during the search to avoid difficulties in the coupling scheme (see above). If a
magnetic field was indeed present, the stronger signal, due to assignment 9a, would
have been shifted outside the search region, and only the weaker one, due to assignment
9, would have been present. This is only 0.5% of the stronger line in row 7 and would
not have been detected. Unfortunately, the original records do not state explicitly that
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the magnetic field was applied. If it was not, then the stronger signal due to row 9a
would have been present. This has 3% of the intensity of the line in row 7 and should
have been detected under our careful search conditions.

A set of measurements for J = 2 in CH;SiF; similar to those discussed above for
J = 1 in CH;SiH; are shown in Fig. 1 of Ref. (6). These measurements correspond
to the matrix elements in rows 10-12 in Table XIV. (It should be noted that there is
a misprint in Table 2 of Ref. (6). In the assignment for the first barrier anticrossing
of type E; <> E, listed there (J = 2), a4 should be F1 rather than *+1.) It can be seen
that the theoretical relative intensity picture and experimental observations for the J
= 2 barrier anticrossings in CH;SiF; remain largely unchanged from those for J = 1
in CH3 SIH3 .

D. New Measurements

With the methods and insight developed in carrying out the analysis described
above, it proved possible to observe the missing £, <> E,| anticrossing in CH;SiH;4
discussed in Section 4C. Unfortunately, an external magnetic field could not be applied,
and the measurements were made in the ambient field. As a result, three assignments
had to be considered, corresponding to row 9, row 9a, and the hybrid of the two. The
spin-spin matrix elements of row 9a are noticeably larger than those of row 9, so the
assignment was made to row 9a. The spin-rotation interaction could in principle
contribute enough to row 9 to make that assignment more favorable, however, so that
in spite of the success of the experiment, this assignment ambiguity must be kept
in mind.

The experiment was carried out with equipment and techniques very similar to
those described earlier (/-8). The Pyrex C-field (4) was 3.2 cm long. It was used in
the configuration which can drive only transitions that conserve the Z-component of
the total angular momentum. The spectrum was measured in a static electric field of
536.6 V/cm, which is 0.41 V /cm below the crossing field (precisely calculable from
other measurements). The signal is illustrated in Fig. 3. The trace shown was obtained
by averaging 16 scans; each scan took 50 sec and the time constant was 1 sec. The
observed full-width at half maximum is 30 kHz, as compared to the expected time-
of-flight linewidth of 14 kHz. We ascribe this difference to inhomogeneities in the
static electric field. ( The C-field had been shortened to 3.2 cm to reduce the effects of
the field inhomogeneities on the intensity. These effects are very difficult to model
and have not been taken into account.)

In order to detect the signal in Fig. 3, the first-order Bessel function J; in Eq. (21)
of Ref. (15) was maximized by setting its argument equal to 1.8. The known tuning
rate of the line, Auxy = 370 kHz/(V /cm), and the known radio frequency, v = 150
kHz, were then used to obtain an optimum value of £ = 0.7 V/cm for the RF field
to be applied for the previously unobserved very weak E, «» E, spectrum. The observed
intensity ratio for the E, <> F| (row 9a of Table XIV)and F; <» E| (row 7) anticrossing
lines was 0.040. This is in reasonably good agreement with the ratio of 0.028 calculated
for the 3.2-cm-long C-field.

5. SUMMARY

The original goal of this work was to show group-theoretically that certain missing
avoided crossing signals mentioned in the previous section were forbidden by symmetry
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F1G. 3. The E; < E| avoided-crossing spectrum observed in a static electric field 0.41 V/cm below the
crossing field. The line is assigned to the barrier anticrossing (J = 1, K = 1,0 = 1, my = tl & J = 1,
K =*1,6 =0, my = F1), i.e,, to row 9a in Table XIV. This represents a class of avoided crossings with
very small mixing matrix elements. The successful observation depended critically on an understanding of
the AC Stark shift and its effect on the lineshape function.

arguments. When all of our attempts to construct such a group-theoretical proof failed,
the goal of the work changed to an attempt to understand why the sensitivity of the
molecular-beam e¢lectric-resonance method might be greatly reduced for avoided
crossing signals of the type under discussion. Once an explanation for this reduction
in sensitivity was found ( /5), the group-theoretical analysis developed here was applied
to the calculation of the spin-spin mixing matrix elements. These were then used in
conjunction with the transition probability for the generalized two-level problem (15)
to explain at least qualitatively the anomalies observed in the earlier selection rule
studies. Finally, the results of Ref. (/5) were applied to determine the optimum am-
plitude of the RF electric field in these avoided crossing experiments and, indeed, an
example of a missing signal has now been found.

The formalism presented here for dealing with hyperfine Hamiltomans in symmetric-
top internal-rotor molecules should be useful in quantitative studies of hyperfine
structure in such molecules.

RECEIVED: September 28, 1990
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