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The torsion-rotation Hamiltonian for symmetric tops has been tested in methyl silane by 
combining recent anticrossing molecular beam measurements in the ground torsional state 
(u = 0) with pure rotational spectra taken for u as high as 4. The earlier microwave data set 
which consisted of J = 1 + 0 and 2 - 1 has been greatly extended by studying millimeter 
transitions for J = 4 + 3, S - 4, and 13 +- 12. An analysis of the 72 rotational frequencies 
for u < 2 and the 15 anticrossing data for v = 0 yielded an excellent fit using 14 rotational, 
torsional, and distortion constants including the effective values for the A rotational constant 
and the barrier height V3. No satisfactory ht could be obtained when the data set was extended 
to include measurements for (u = 3) or (u = 4). For each of these higher torsional levels, the 
difference between the observed frequencies and the predictions based on the best (u 6 2) 
constants can be expressed in terms of a shift SB” in the B rotational constant, where aB, is a 
smooth function of the torsional energy. This disagreement is of particular interest because it 
may result from the fact that the molecule passes from hindered to free rotation as u is increased 
from 2 to 4. The possibility of perturbation by a low-lying vibrational level is considered briefly. 
The information contained in the different types of spectra is discussed; the redundancy relations 
are treated and a Fourier expansion of the diagonal torsional matrix elements is introduced. For 
‘2CH929SiH “CH3%iHJ, and “CH3*%iH3, pure rotational spectra for u = 0 were studied 
briefly in nkual abundance. The results were combined with existing data for two deuterated 
symmetric rotors to obtain a structure based only on symmetric top rotational constants. 

1. INTRODUCTION 

The study of internal rotation in symmetric tops has long been seriously hampered 
by a lack of precision experimental methods. Because of the (AK = 0) selection rule 
for electric dipole transitions, the conventional microwave rotational spectrum is 
insensitive to the leading term in the torsional Hamiltonian. Until very recently (I), 
no direct measurement of these terms had been made and symmetric top studies had 
to rely on indirect techniques. 
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The most widely used of these established methods is the torsional satellite technique 
introduced by Kivelson (2). Centrifugal distortion effects in the leading torsional terms 
do enter the rotational spectrum and produce splittings that, at least in higher torsional 
states, can be resolved with conventional microwave spectrometers. This method has 
now been used for several symmetric rotors including CH$iS (3, 4), CF3SiF3 (5), 
CF3GeH3 (6), and CH3SnH3 (7). 

The main weakness in this approach is that the height and shape of the potential 
enter only through their effect on the torsional wavefunctions used in calculating the 
distortional perturbations. A second difficulty lies in the fact that the results are 
dependent on the structure assumed. The moments of inertia about the symmetry 
axis of both the top (ZJ and the entire molecule (In) are required and generally cannot 
be determined directly. As a result, the same data can often be interpreted in different 
ways, as has been done with methyl silane (8, 9). 

With the recent development of the avoided-crossing molecular beam technique 
(10, II), it is now possible (I) to measure directly in the same experiment both the 
leading torsional terms and the required moments of inertia. To date these mea- 
surements have been restricted to the ground torsional state. The technique has been 
applied to methyl silane, the prototype of the torsional satellite method. In Paper I 
of the current series,3 the necessary Stark measurements were made; in Paper II4 the 
avoided-crossing results were reported and analyzed together with a molecular-beam 
measurement of the (J = 1 - 0) rotational spectrum for the torsional state (V = 0) 
and Hirota’s microwave data (8) for (U = 1) and (u = 2). 

The purpose of the present work is to test the existing model (2, 3) for internal 
rotation in symmetric tops. To this end, the microwave data set for ‘*CH3”SiH3 has 
been greatly extended; a detailed study has been carried out in the millimeter wave 
region covering ,Z = 4 + 3, 5 + 4, and 13 - 12, all with v < 4. In addition, the 
precision of some of the older (J = 1 + 0) microwave measurements has been 
improved. 

On the basis of this test, it is concluded that the model for internal rotation is 
consistent with the data from the two different techniques for the lower torsional 
levels (V d 2), but the model must be modified when the higher torsional levels 
(v 2 3) are included. When 72 rotational frequencies for u < 2 and 15 anticrossing 
data for v = 0 are analyzed, an excellent fit is obtained using 14 rotational, torsional, 
and distortion constants; the results are listed in Table I. However, for (V = 3) and 
(u = 4), a clear discrepancy exists between the measurements and the frequencies 
predicted from Table I. For (u = 3) this discrepancy can be expressed as 26B3(J + 
l), where 6B3 is a smooth function of the torsional energy E?‘. Similar behavior is 
observed for (u = 4), although 6B4 is less sensitive to ET’. Regardless of which torsion- 
rotation parameters are added to those listed in Table I and regardless of the values 
used for the entire set, the differences between the observed and calculated frequencies 
remain an order of magnitude larger than the experimental errors. 

Two possible mechanisms for the disagreement between experiment and theory 
are suggested. The first involves a torsional perturbation which is enhanced by the 

3 Paper I refers to Ref. (12). 
4 Paper II refers to Ref. (13). 
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TABLE I 

Molecular Constants for CH328SiH3’ 

Quantity Value 

*eff 
(MHZ ) 

B (XHZ) 

D.J 
Ckliz) 

D 
JK 

CkHz) 

D 
K CkHz) 

P 

eff 

“3 

-1 
(cm ) 

F3J 
(MHz 1 

F 
65 

(MHZ) 

D 
Jill 

(MHZ) 

Deff 

Km 
(MHZ) 

dJ (MHz) 

HJlimI 
(Hz) 

HJKm 
(Hz) 

H 
JJm 

(Hz) 

56 189.167 (17) 

IO 986.0949 (51) 

IO.7111 (95) 

45.550 (57) 

189.65b 

0.351 8124 (49) 

592.3334 (72) 

-135.77 (17) 

-4.83 (14) 

0.6714 (78) 

10.7 (1.9) 

-0.1257 (13) 

670. (160) 

-59. (10) 

10.14 (70) 

a - Several quartic and sextic constants were 

fixed at zero. See text. 

b - This is fixed at the force field value (2). 

passage of the molecule from hindered rotation (t) G 2) to free rotation (V 3 4). The 
second involves a vibration-torsion-rotation perturbation by the nearby lowest-lying 
degenerate vibrational level (ui2 = 1) and/or the associated sequence of torsional 
combination levels. The nature of this mechanism is important not only with respect 
to the modifications needed in this model, but also with respect to the properties 
deduced for other molecules which undergo internal rotation. 

In establishing that the model behaves as described, the development of the torsion- 
rotation Hamiltonian is outlined briefly with emphasis on the redundancy relations 
(14, 15) and the problem of extracting the true values of the leading parameters from 
the experimental data. The information contained first in the torsional satellite spectra 
and second in the anticrossing measurements is discussed. In treating the latter, the 
standard Fourier analysis (16) used for internal rotation is extended; the result- 
ing expansions lead to the formulas for the effective parameters introduced in 
Paper II (13). 

Rotational spectra for (V = 0) were obtained for three modifications: ‘2CH330SiH3, 
‘2CH329SiH3, and ‘3CH328SiH3. The first of these was studied to complement the 
anticrossing measurements on this isotopic form in Paper II (13). The data on the 
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four isotopic modifications studied here were combined with results from earlier 
experiments on “CHs2*SiD3 (8) and ‘2CD328SiH3 (9) to obtain the structure from 
symmetric top measurements only. 

In the current work, the notation will follow as closely as possible that used in 
Papers I and II. Definitions not given explicitly here can be taken over from these 
earlier works. The fundamental constants are taken from Ref. (17). 

II. THEORETICAL BACKGROUND 

1. The Hamiltonian 

To establish that theory and experiment do not agree, care must be taken that all 
relevant terms in the torsion-rotation Hamiltonian HTR are included. In the current 
work the internal-axis method (IAM) is used.5 One starts with a classical formulation 
of the hindered rotor problem and obtains the quantum mechanical Hamiltonian 
HriM in the principal-axis method (PAM) (3, 16). The IAM Hamiltonian HTR is 
then obtained in a process which involves the transformation of the torsional angular 
momentum 

PPAM = P + PJ,. (1) 

In zeroth order, H;iM contains the term -2,4’J, pp~~ where A’ is the rotational 
constant of the silyl frame. In zeroth order, H ?P contains no coupling term between 
J, and p; the term is eliminated by setting 

P = L/L. (2) 

The zeroth order IAM Hamiltonian H?i can then be written as the sum of a rotational 
term Hg’ and a torsional term Ht’ where 

Hg’=BJ2+(A-B)J2* 2, @a) 

H”’ = Fp2 + I’, A (1 - cos 34. T 
2 

(3b) 

The reduced rotational constant 

F = MPU - PJI. (4) 

In this order, I’, is the height of the threefold potential V(a). 
In extending the calculation of HTR beyond zeroth order, it is convenient to consider 

the Fourier factor (1 - cos 3ncr)/2 with n = 1, 2, 3, . . . to be of the same order as 
a factor of degree 2n in the angular momenta. Then the first-order Hamiltonian 

Hy:, = V, ; (1 - cos 6a) + lp2 + ; (1 - cos 3a)[FS,J2 + I;,&] - D.,J4 

- DJKJ2J; - D,J; - [DJmJ2 + DKmJ: + D,p2]p2 - L&J2 + c&J: + d,np21Jzp 

’ When the notation does not explicitly indicate the coordinate system, it is understood that the IAM 
is to be used. 
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+&[J,p cos 3a + cos 3a Jzp] + Fj, p2 2 +I - cos34+;(1 -cos3a)p2 
I 

. (5) 

The division between HFi and Hgk is somewhat arbitrary; the particular division 
described here (termed Method I) is that commonly used in the literature (14, 16, 
18). An alternative method is described here in Section 11.3. The parameters Fv, 
DJm, and dJ are related in Paper II to the older notation (2, 3, 8, 24). The constants 
k, , k2, k3, k4, k5, and k7 used in Refs. (14) and (18) are here denoted, respectively, 

by -& -DK~, -d,, -0,) (l/2) F3K, and F3,,, . In the current notation, the operation 
associated with each constant can be read from the constant itself once two rules are 
defined. First, an F3,, (orf&) involves a Fourier factor cos 3na, while a D (or d) does 
not. Second, a lower case implies an operator J,p in addition to the operators specified 
by the subscripts. These rules clearly do not apply to V, or 5: 

In the current work, the coupling term J,p is absent from HTR in first order as 
well. This is achieved by replacing p in Eq. (1) by an effective value j. To see how 
i differs from p, it is necessary to consider the terms in the lust-order PAM Hamiltonian 
which can produce a term J,p in HTR. These are 

HIrAM = eJzpPAM + t’ J,p,, f (1 - cos 3a) + + (1 - cos 34J,ppAM 
I 

Pbhl;(l -cos34+1(1 -cos3a)p;*~ 1 . (6) 
t arises from inertial defect effects (19). It was found to be significant in both nitro- 
methane (19) and methyl alcohol (14). It can be shown that 

t” = Fjm; (74 

t’ = f3 - 2pF3,. VW 
Then 

; = P - k +s3 - PJ’~,I/F. @a> 

These terms in HrAM also make a contribution to HTR of the form Jt, so that A 
in Eq. (3) must be replaced by 

k = A + pc. (8b) 

Similarly, the coefficient of (l/2)( 1 - cos 3a)Jz is modified to form F3K. Since neither 
A nor p can be isolated, F must be taken as 

F = ‘&(l - b)]. (9) 

To correct for this, the term in p2 is introduced in Eq. (5) with { = (F - fl). Equations 
(7) and (8) are accurate only to first order in the quartic constants t, X, and F3m. 

Because rather high values of J have been investigated, the next order contribution 
to the Hamiltonian must be included: 

H$ = V9 ; (1 - cos 9a) + ; (1 - cos ~cY)[F~~J* + F,,J;] + ; (1 - cos 34 
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+ W.mJ4 + fhnJ2J: + fk~rnJf1~~ + W_rm,J2 + fkm,J: + Knmm~~l~~ 

+ [hJJJ4 + hJKJ2J; + hmJ:]Jzp + [hJmJ2 + hKmJ; + h,,p2]J,p3. (10) 

Equation ( 10) omits all terms involving the factor (l/2)( 1 - cos 3na)p or 
p( l/2)( 1 - cos 3n(u). They are redundant in the sense defined in Section 11.2. and 
will contribute no more than a correction in the next highest order. 

2. The Energies 

The total torsion-rotation energy E for a symmetric top in the ground vibronic 
state can be labeled by the quantum numbers (u, J, K, a). For each torsional level 
2), the sublevels of symmetry A and E are labeled by (u = 0) and (G = & 1 ), respectively. 
The correspondence between the torsion-rotation symmetry r and (J, K, a) is given 
in Ref. (8). 

In Method I, the zeroth-order energy E. (v, J, K, a) is obtained by first diagonalizing 
HT’ to obtain the torsional contribution E(TO) and then adding the rotational contri- 
bution Et’. See Eq. (3). The to r ion-rotation eigenfunctions of iY% are referred to s’ 
as Basis I. The first-order correction E,(v, J, K, a) can be read directly from Eq. (5) 
by replacing each operator Q by its diagonal matrix element (St), calculated by 
this basis. 

A careful selection of independent parameters must be made in a first-order cal- 
culation from among V3, I’,,, A, p, F, [, f3, and F3,,,. In doing so, account must be 
taken of two “redundancy” relations (24). First, 

(p cos 3cx),& = (cos 3a p)“~~ = 0. (11) 

This eliminates X. The second relation can be read from Eq. (12) below by setting 
V6 = { = DKm = 0. This shows F3,,, can be eliminated by introducing effective 
parameters for {, I’,, and V,. The effective value for F is not independent since it 
is calculated from Eq. (9). In the group above, then, the independent effective values 
are those for V3, V,, A, p, and 5: 

In the work on methyl alcohol (14, 18), the moments of inertia of the top and 
frame were used as independent parameters. Here A and p are used instead. This 
choice was dictated by the nature of the anticrossing experiments; see Section IV. 
Because H$ contains no term in J,p, the treatment here is equivalent to setting kh 
in Ref. (14) to zero; a first-order analysis with Method I thus corresponds to Fit I of 
Lees and Baker (14). 

The second-order energy E2(v, J, K, u) consists of two parts: the diagonal matrix 
elements of H$i and the second-order perturbation sums due to H$k. In the latter, 
the contributions fromf3 and F3:3m must be included since the two redundancy relations 
apply only to the diagonal matrix elements. Of course, higher-order redundancy 
relations exist (15), so that not all the different contributions to E2(0, J, K, a) can be 
isolated. However, since the current data set can fix at most four sextic constants, 
no attempt was made to pursue this question. 

The calculation in Method I of the second-order correction due to H$ is very 
awkward. Not only are there a large number of terms, but many of these can be 
rather large, particularly those involving V6 and 5: These constants can lead to J- 
dependent contributions through various cross terms. 



TORSION-ROTATION STUDY OF CH3SiH3 95 

To simplify the calculation, Method II was introduced in which all the J-independent 
torsional terms in Eq. (5) were transferred from H $A into Hf’ to define a new zeroth- 
order torsional Hamiltonian I@)‘, as well as corresponding new zeroth- and first- 
order torsion-rotation Hamiltonians fi?A and A(‘) TR, respectively. The eigenfunctions 
of @A form Basis II. By isolating the J-dependent distortion terms in AR in this 
way, the number of terms in the perturbation sums and their magnitude were greatly 
reduced without increasing the dimensionality of the torsional matrix to be diago- 
nalized. 

This change of basis, however, requires that the redundancy relations be reconsidered 
because they were derived (14) only for Basis I. If only the terms in V6, {, and DKm 
are included in the transfer, then redundancy relation (11) is not altered. Furthermore, 
the second relation can be written 

1 1 
p*-(1 -cos3CX)+-(1 -cos34p* 

2 2 VKO 

=(p*,,KC+(;+J&l -cos3U))VKS-(W4FI(;(l -cosW), 

- (Va/2F’) ; (1 - cos 9a) 
( > 

- 9/4 (12a) 
VKU 

where 
F’=P+ {-K*DK,,,. (12b) 

In this case, to first order,& can be dropped and F3, can be eliminated by introducing 
the effective parameters 

s’ = C + F3m (134 

I73 = V, + (9/2 + V,/2F)F3, (13b) 

& = V, - F3,,, V3/4F. (13c) 

In addition, pg must be introduced and the meaning of F3K is altered. 
In applying Method II, this form of the redundancy relation is used, thus eliminating 

diagonal contributions of h and F3m. Because the transfer included more than just 
Vi, 5; and Ofi, this step introduces an error. However, because V6 and {arc: dominant, 
the error is insignificant. Furthermore, the off-diagonal terms off, and F3m can be 
neglected. 

In the final fit, V6 and { were fixed at zero so that the most important differences 
between Methods I and II are discarded in the end. In spite of this, Method II is very 
useful: in the calculations which establish that in fact only the constants given in 
Table I can be determined, the simplifications inherent in Method II are very helpful. 
Method II will prove even more useful in analyzing later experiments in which & 
and [can be determined. 

Direct diagonalization (Method III) was also used. As in Method II, the simplifi- 
cations from the redundancy relations were used and A with F3m were eliminated 
without correction. Aside from this, the full torsion-rotation Hamiltonian was di- 
agonalized for each relevant value of J. No significant difference could be found 
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between Methods II and III. Once this was established, Method II was used routinely 
and Method III was applied only to obtain the final fit. 

III. THE ROTATIONAL SPECTRUM 

The electric dipole selection rules for the rotational spectra observed are (J’ - J) 
= A J = 1, AK = 0, Aa = 0. In Method II, the frequencies for these transitions can 
be written to sextic degree as 

V(U, J, K, u) = 2(J + 1)&u, K, a) - 2(J + 1)K2&(v, K, a) 

Here 
- 4(J + 1)3d,(u, K, u) + H&J + l)‘{(J + 2)3 - J’}. (14) 

&v, K, u) = B + F3., 
( 

i(l -cos~~))~~~+F~~(~(I -cos~~))~~~ 

- DJ.w(P~)~K~ - d&( p),K, + HJ,,( P~)~K,, 

+ hJmK(p3),K, + J&K&~ - Dmf'3~& + &DJ~& (15) 

where Zi and & are different second-order perturbation sums. It is implicit here that 
the matrix elements are to be calculated in Basis II. Expressions similar to (15) can 
be derived for bJK(v, K, a) and fiJ(u, K, a) from Eqs. (3), (5), and ( 10). 

For a given torsional sublevel (u, K, a), 8, fi JK, and ri, are effective constants 
independent of J because the matrix elements and the second-order corrections are 
not functions of J. The basis of the torsional satellite method lies in the fact that the 
effective rotational constant B for ull the sublevels can be accounted for by a single 
expression, namely (15), where all the matrix elements can be calculated from the 
eigenfunctions of the same torsional Hamiltonian. The effective quartic distortion 
constants 6JK and dK can be calculated in a similar way, but their changes with 
(u, K, a) are much smaller. 

The microwave spectrum of CH328SiH3 was first reported by Lide and Coles (20), 
who observed the (JK = l,, - 00) spectrum in the 21-GHz region. This particular 
spectrum was subsequently remeasured by Hirota (8) and by Ewig et al. (9). In Paper 
II, the very small u splitting in the (u = 0) state was partially resolved with a molecular 
beam spectrometer. Hirota (8) extended the microwave measurements to the 

(JK = 21 - 1 i) spectrum. 
In the present experiment, four different (J + 1 - J) spectra were studied, all at 

room temperature. Three lines in the (J = 1 - 0) spectrum with u >, 2 were measured 
once more to reduce the errors to 30 kHz. The values agreed with the older deter- 
minations. To test the accuracy, the ground state (J = 1 - 0) line was observed. 
The resulting frequency of 2 1 93 1.90 1 (20) MHz for the unresolved pattern was within 
5 kHz of the value calculated from the Paper II beam measurements of the partially 
resolved spectrum. The current observations were made with a conventional Stark- 
modulated spectrometer in the Department of Chemistry at the University of British 
Columbia. To improve the sensitivity, a 6-m X-band absorption cell was used with 
a phase-locked klystron source swept by a signal averager. 

The (J = 4 - 3) and (J = 5 - 4) transitions were studied with the computer- 
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controlled millimeter wave spectrometer in the Department of Physics at the University 
of British Columbia. The basic instrument as described by Statt et al. (21) was modified 
for Stark spectroscopy with conventional techniques. A 3-m K band absorption cell 
was used. The source was a phase-locked backward wave oscillator. The linewidth 
was typically 700 kHz. 

The (J = 13 - 12) spectrum in the 285-GHz region was studied with the millimeter 
wave spectrometer (22) in the Institut fiir Molekiilphysik of the Freie Universitat, 
Berlin. Because saturation modulation was used, the lines with K = 0 could be 
observed. A l-m free space absorption cell was employed. The source was a phase- 
locked carcinotron. The lines had a width of 650 kHz. 

The frequencies obtained for u < 2, 2, = 3, and 2, = 4 are listed in Tables II, III, 
and IV, respectively. In most cases, the frequency was measured at least twice. Also 
included in these tables are the earlier measurements (8, 14) for lines which were not 
studied in the current work. 

For each (J + 1 - J), the distribution of the frequencies with (v, K, CT) shows a 
similar pattern which is strongly affected by the fact that the torsional energy Ep is 
clearly < V3 for 2, < 2, @’ - V, for n = 3, and J!$’ is clearly > V, for v 2 4. Consider 
the J = (4 - 3) spectrum as an example of the pattern. For (u < 3), the spectrum 
consists of sets of well-separated lines, one set for each v. The spread within each set 
due to the (K, u) dependence of v(u, J, K, a) increases with 21 from -3 MHz for 
(u = 0) to -40 MHz for (v = 3). The separation between sets decreases with u; the 
gap between (v = 0) and (v = 1) is 260 MHz, while that between (v = 2) and 
(u = 3) is only 170 MHz. 

For u > 3 where the levels are well above the top of the barrier, these characteristics 
change. The effect of the potential V(a) on B, dJK, and BJ is greatly reduced and 
the lines no longer separate into distinct sets according to u. Calculations show that 
lines for u = 4 and 5 are closely intermingled. At room temperature, the predicted 
intensities of the strongest (u = 5) lines are comparable to the intensities of the 
intermediate (u = 4) lines. Thus the identification of the lines for u > 3 is very 
difficult. The procedure used here is discussed in Section V. It should be emphasized 
that the identljication given in Table IVfor u = 4 is tentative. 

A torsional satellite study such as that described here can yield B and the quartic 
distortion constants that enter in Eq. (14) provided enough torsional sublevels are 
studied to sufficient accuracy. The sextic constants are treated here entirely empirically, 
in part because of the question of higher-order redundancy relations. The sextic 
constants are included primarily to improve the values of the quartic parameters, 

IV. THE ANTICROSSING MEASUREMENTS 

A description of the molecular beam studies of both the barrier and rotational 
anticrossings was given in Paper II, but it was left to the current work to determine 
in detail how much information can be extracted from these data. To answer this 
question, we will first extend the standard Fourier analysis (16) that has been used 
in internal rotor problems. Since all the data were in the ground torsional state with 
low J and K, the sextic terms will not be considered. 

It is well known (16) that in Method I the eigenvalues @’ of the zeroth-order 
Hamiltonian H(TO) can be expanded as 
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TABLE II 

Pure Rotational Frequencies (in MHz) for CH,28SiH3 in Torsional Levels well below the Barrier Top 

Lower state 
oa 

Observed Valueb 
6 ZObserved 

v J K -Calculated 

0 
0 
I 

I 

2 
2 

0 
I 
1 
I 
2 
2 
2 

0 
0 
0 
I 
I 
I 
I 
I 
I 
I 
I 
I 
2 
2 
2 
2 
2 
2 
2 
2 
2 

0 
0 
0 
0 
I 
I 
I 
I 
I 
I 
I 
I 

4 *4 mean 109 677.091 (050) 
4 *I 0 109 359.222 (IO01 
4 Cl Cl 109 357.897 i2ooj 
4 *2 0 109 356.408 (400) 
4 +2 +l 109 357.897 (200) 
4 *2 71 109 353.960 (100) 
4 *3 0 109 352.600 (200) 
4 +3 ?l 109 356.408 (400) 
4 *3 71 109 352.600 (200) 

?I 937.885 (OIOjC 
21 937.913 (010); 
21 873.100 (100). 
21 872.460 ilOOja 
21 808.928 (030) 
21 814.465 (030) 

43 875.280 (170jd 
43 745.410 (loo)d 
43 744.750 (loo)d 
43 743.880 (lOOjd 
43 618.530 (lOO)d 
43 622.730 (lOO)d 
43 632.890 (lOOjd 

87 748.681 (050) 
87 747.601 (050) 
87 745.744 (050) 
87 488.837 (100) 
87 487.828 (200) 
87 485.750 (100) 
87 486.537 (300) 
87 487.828 (200) 

87 484.596 (100) 
87 483.503 (200) 
87 486.537 (300) 
87 483.503 (200) 
87 235.518 (050) 
87 243.682 (050) 
87 264.420 (050) 
87 242.180 (050) 
87 234.680 ilOOj 
87 263.240 (050) 
87 251.973 (200) 
87 223.762 (100) 
87 251.973 (200) 

109 683.347 (050) 
109 682.621 (050) 
109 680.280 (050) 

-0.001 
0.002 
0.034 
0.089 
0.001 
0.008 

-0.080 
-0.057 
-0.178 
-0.027 
-0.226 
-0.117 
-0.306 

0.008 
0.003 

-0.034 
-0.065 
0.005e 

-0.031 
-0.136e 
-0.006e 
-0.098 
-0.093e 
O.llge 

-0.173e 
0.037 
0.015 
0.044 

-0.083 
0.048 
0.032 

-0.064= 
-0.001 
-0.106e 

0.026 
0.043 

-0.022 
0.006 
0.000 
0.024e 

-0.027e 
0.010= 

-0.001 
0.012e 
0.2age 

-0.089e 

(fh)v~.s = 5 a’,“’ cos [(2?m/3)(;K - a)]. (16) 
n=O 

The arguments leading to expansion (16) can be extended to the diagonal matrix 
elements of any torsional operator in either Basis I or II. For each torsional operator 
QP of interest here, the diagonal matrix elements (Q,), are either even or odd under 
the operation (Ku) * (-K, -a) according as p is + 1 or - 1, respectively. In all even 
cases, (Q, l)VK., can be expanded as in Eq. ( 16); for the odd cases, 
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TABLE II-Continued 

Lower state 
oa 

Observed valueb 
6 I Observed 

v J K -Calculated 

109 042.516 (100) 0.069 

109 052.682 (050) -0.002 

109 078.689 (100) 0.109 

109 050.954 (100) 0.025 

109 041.600 (300) 0.215 

109 077.114 (100) -0.006 

109 063.237 (200) 0. 085e 

109 035.145 (300) -0.154 

109 063.237 (200) 0. 033e 

109 072.017 (100) 0.015 

109 035.145 (300) 0.081 

109 046.254 (200) 0.132 

285 099.430 (150) -0.025 

285 098.370 (150) 0.037 

285 094.900 (050) 0.058 

285 088.910 (100) -0.015 

285 080.540 (100) -0.019 

285 069.870 (050) 0.011 

285 056.820 (050) -0.009 
285 041.310 (050) -0.055 
285 023.450 (050) -0.023 
285 003.170 (050) -0.033 
284 980.680 (050) -0.010 

284 955.810 (050) -0.003 
284 928.570 (050) 0.057 
284 257.520 (100) 0.099 
284 254.750 (100) 0.010 
284 251.240 (200) 0.032e 
284 251.240 (200) -0.030e 
283 496.020 (100) 0.031 
283 525.660 (100) -0.036 
283 521.810 ilOO) -0.084 
283 485.410 (ZOO) 0.024e 
283 485.410 (200) -0.089e 
283 508.620 (070) 0.020 
283 497.120 (100) -0.010 

a - The entry “mean” indicates that the 0 splitting was not 

resolved. The fit was made by setting the calculated 
frequency equal the average over 0 weighted by the intensities. 

b-Except as noted, the frequencies were measured in the current 

work. 

c-these fequencies were taken from Paper II (2). 

d-These frequencies were cake” from Ref.(8). No errors were 

given in the original work. The error a<sumed in the 
present fit was 100 kHz for each line with one exception. 

For (v=O), the error was increased to 170 kHz because of 

the averaging involved as mentioned in Footnote a. 

e-In these cases, two different calculated frequencies lie very 
close to the measured value. Both identifications were accepted 

and the errors increased to allow for the calculated se&xation. 

(Q-I)& = ,? up) sin [(27rn/3)(jX - a)]. (17) 
n=l 

In all cases, the expansion coefficients a p’ depend on only one quantum number, 
namely o. They depend, of course, on the particular operator being expanded. In 
Basis I, the only molecular parameter that affects the ~2:) is the reduced barrier height 
s. In Basis II, the a’,“’ depend as well on the additional parameters in A$, but this 
dependence is very weak. 
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TABLE III 

Pure Rotational Frequencies for CH,‘*SiHS in the (u = 3) Torsional Level 

Lower state Observed Valuea gb 
c 

J K o r (MHz ) (MHZ) (iz) 

E(O)_ ,;ff 

T -I (cm ) 

0 0 0 
0 0 fl 

A2 

E4 

I fl 0 
I ?I *I 

El 

I fl 71 
B2 

E3 

3 *I 0 

3 *I il 
Sl 

3 fl il 
E2 

E3 

3 
3 

f2 0 E, 
*2 f, 

3 *2 71 
E3 
B2 

3 r3 0 A+A 

3 23 rl 
3 23 Tl 

k42 

S4 

4 fl 0 

4 ?I ?I 
El 

4 ?I 71 E2 

E3 

4 ?2 0 

4 *2 rl 
El 

4 *2 ?I 
E3 
B2 

4 +3 0 A+A 

4 ?3 +I 
4 *3 71 

1%2 

B4 

4 +4 0 

4 *4 +I 
El 

4 *4 FI 
B2 
B? 

21 768.727 (030)d 

21 758.47 (100) 

43 530.60 (lOO)d 

43 520.92 (lOOjd 
43 512.31 (lOO)d 

87 059.670 (070)e 

87 040.273 

87 022.707 

(07O)f 

(070) 

87 046.428 (070) 

87 051.137 c070je 
87 019.805 (070) 

87 032.195 (070) 

not observed 

87 022.707 (070)f 

108 822.733 (100) 

I08 798.227 

I08 776.348 

(lOOjf 

(100) 

108 806.174 (100) 

108 812.043 (200) 
I08 772.834 (100) 

I08 788.363 (100) 

not observedg 
I08 776.348 (lOO)f 

I08 769.865 (100) 

I08 824.246 (150) 

I08 780.815 (100) 

- 6.05 -3.03 

- 0.60 -0.30 

- 4.86 -1.22 

- 2.44 -0.61 

- 0.84 -0.21 

- 9.25 -1.16 

- 4.44 -0.56 

- I.56 -0.20 

- 4.10 -0.51 

-11.32 -1.42 

- 1.64 -0.21 

- 2.28 -0.29 

- 2.51 -0.31 

-11.54 -1.15 

- 5.77 -0.58 

- 2.09 -0.21 

- 5.10 -0.51 

-14.15 -1.42 
- 2.07 -0.21 

- 2.83 -0.28 

- 3.27 -0.33 

- 2.21 -0.22 

-10.98 -1.10 

- 6.92 -0.69 

21 .6 

-24.2 

8.3 
- 8.2 

-32.9 

8.3 
- 8.2 

-32.9 

-Il.1 

II.4 

-32.1 

-26. I 
21.1 

-22. I 

8.3 
- 8.2 

-32.9 

-II.1 

II.4 

-32.1 

-26.1 
21.1 

-22. I 

-33.4 

5.2 

- 5.3 

a-Except as noted, the frequencies were measured in the current work. 

b- 6 E observed value minus that calculated from the constants in Table I. 

c-6B3 : 6/[2(J+l)] 

d-These frequencies were taken from Ref.(g). No errors were given in the 

original work; the errors shown were assumed for the current comparison. 

e-Stark effect studies confirm the K assignment. 

f-This measured value falls close to two different predictions. Neither 
assignment can be ruled out 

g-A weak line was observed at 108 859.39 (30) MHz with 6 E -6.95 MHz. 

However the resulting 6B is in sharp disagreement with the dependence 

on (E&OS- V;ff) h s own by the other transitions. 

For a specific v and K, the unweighted average over u of (Q,), can be calculated 
from Eqs. ( 16) and ( 17): 

@& = 8’ + 5 a$$’ cos (2?mKji/3) (184 
n=3,6,9 

(G)“, = 5 a’,“’ sin (2nnKjV3). 
n=3,6,9 

(I@) 
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TABLE IV 

Pure Rotational Frequencies for CHs2%iHs in the (u = 4) Torsional Level (assignments tentative) 

Lower state Observed Valued ,sb 
c 

J K a r (MHZ) (MHz) (a, 

E$O) _ v;ff 

(cm-’ ) 

0 0 0 
0 0 fl 

A, 
E4 

3 fZ 0 
3 f2 f, El 
3 *2 71 E3 

E2 

3 53 0 A+A 

3 t3 *, 
3 13 31 

k4 2 
E4 

4 fl 0 E 
4 f, f, E' 
4 il 71 E; 

4 -tz 0 
4 *2 k] El 

4 +2 Fl 
E3 
E2 

4 +3 0 A+A 

4 t3 +I 
4 +3 31 

\42 
4 

4 f4 0 4 t4 *I E, 

4 *4 71 EZ 
E3 

21 737.82 (lO)d 
21 743.22 (lO)d 

43 485.61 (lO)d 
43 493.00 (Icod 
43 474.67 (iO)d 

86 969.80 (lO)e 
86 984.23 (IO) 
86 948.45 (20) 

86 965.34 (lO)g 
86 978.92 (IO) 
86 969.80 CIO)e 

86 945.76 (lO)f 
86 945.76 (lO)f 
not observed 

108 710.26 (lOjf 

108 728.62 (IO) 

I08 683.50 (50) 

108 704.65 (!O)h 

108 721.84 (IO) 

108 710.26 CIO)f 

I08 677.30 (40) 

108 680.28 (IO) 

108 732.64 (IO) 

108 649.30 (40) 

108 687.10 (40) 

I08 742.31 (IO) 

- 0.59 -0.30 60.0 
- 2.18 -1.09 137.2 

- 1.51 -0.38 77.0 
- 2.68 -0.67 102.5 
- 7.57 -1.89 174.9 

- 2.46 -0.31 77.0 
- 5.15 -0.64 102.5 
-14.07 -1.76 174.9 

- 5.40 -0.68 107.7 
- 2.29 -0.29 72.8 
-12.95 -1.62 168.9 

- 9.23 

+ 0.06 

-1.15 
+0.01 

143.0 
60.6 

131.5 

- 3.20 -0.32 77.0 
- 6.25 -0.63 102.5 
-17.81 -1.70 174.9 

- 6.93 -0.69 107.7 
- 2.81 -0.28 72.8 
-16.35 -1.64 168.9 

-14.60 -1.46 143.0 
+ 0.03 +o.oo 60.6 
-10.10 -1.01 131.5 

-19.58 -1.96 181.0 
- 3.34 -0.33 81.1 
- 5.75 -0.58 97.4 

a-Except as noted, the frequencies were measured in the current work. 

b-6 I observed value minus that calculated from the constants in Table I. 

c-6B4 I 6/[2(J+l)] 

d-These frequencies were taken from Ref.(8). No errors were given in the 

original work; the errors shown here were assumed for the current comparison. 

e-Stark effect studies indicate theintensity is at least dominated by the 
(K = *I) assignment. However, the (K = f2) transition, which is calculated 
to be weaker by a factor -2, could also be present. Both predicted 
frequencies fit rhe analysis reasonably well. 

f-This measured value falls close to two different predictions. It is con- 
sidered that both assignments are equally likely to be cwrect. 

g-A second line was observed at 86 961.92 (10) MHz with 6 = -8.82 MHz, but 
it is considered to be a poorer choice for this assignment. 

h-A second line was observed at I08 700.53 (IO) MHz with 6 = -11.05 MHz, 

but is considered to be a poorer choice for this assignment. 

For the ground torsional state and the current value of s of 32, /~,+~/a,[ - l/3000. 
It is clear then, that to excellent approximation, 

(np)o=# (p= +l) (19a) 

= 0 (p = -1). (19b) 
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The subscript K on the average has been dropped because, within the context of the 
approximation, the averages are independent of K. 

For each J, the barrier anticrossings can yield two (K = f 1 e, 7 1) splittings: 

VEE E E(0, J, +l, +I) - E(0, J, Tl, Tl) (2Oa) 

VEA c E(0, J, +l, 71) - E(0, J, Tl, 0). (20b) 

Absolute measurements were made for 1 G J < 6, and relative measurements were 
made of v&J = 2) - V&J = 5) and of VEA(J = 2) - VEA(J = 5). The results are 

summarized in Table II of Paper II. 
For each J, the information contained in the two frequencies can be expressed as 

VEA/+E = i { 1 + d3 cot [2rr;/3]} { 1 + 2d3(Az/AI) sin [(2~/3)( 1 + ;)] 

+ (\/3/2)(&/A,) cosec [(2n/3)(1 - F)] cosec [2rrZ/3]} (21a) 

- 5 (&A + V& - VEA&'JZE)~'~ = Al + A 2 cos (2@/3){ 1 - 4[sin (2?r2/3)12}. (21b) 

In the quartic analysis in use for the beam data, 

A, = [& + FJJJ(J + 1) + &]u$~~) + v&p’ 

+ [f + s” - DJ,J(J + 1) - &,,]a~) - &,,a’,4 n= 1,2 (22a) 

B, = -[d.,J(J+ 1) + d&i” - ~&a;~‘. (22b) 

In the superscripts on the a,, (3na) refers to (l/2) (1 - cos 3n(u) and (n) refers to p”. 
Equation (2 1) is a higher-order form of Eq. (13) of Paper II. In the correction terms 
in Eq. (21), the expression for A, can be simplified to 

A, = J73u(,3a’ + lcz(n2) n b 2. (23) 

Equation (2 la) gives a very accurate value for j. The two correction terms are 
small enough that A, and A2 can be calculated to sufficient accuracy from rather 
approximate values of f3 and l? In Br , the J-dependent term is negligible, as can be 
shown from the value of dJ obtained from the microwave data. The upper limit 
obtained from the combined fit for the other terms in B, shows that an error of at 
most 35 ppm is introduced into ?, by setting B, = 0. This is negligible compared to 
errors from other sources. Furthermore, since the experimental splittings enter only 
as a ratio, the error in the dipole moment does not affect Eq. (21a). As a result, the 
value of ?, obtained from Eq. (2 1 a) is very insensitive to all other molecular constants. 
It is clear, then, why 7, was chosen as a fitting parameter. 

From Eq. (2 lb), the coefficient A, can be determined since /; is well known and 
A2 again can be calculated to the required accuracy. From measurements of A, for 
a variety of J’s, one can determine the limit L as J -) 0 and the derivative S with 
respect to J(J + 1). 

L = [ I73 + F3&\3m) + &uy’ + [P + f - DKm]u\2’ - D,u\4’ (244 

S = F3~4 
t34 _ &,4*). 

Wb) 
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Studies of the rotational anticrossings (J, K, a) = (1, f 1, a) c--f (2, 0, d) yielded 
four splittings of the form 

V cd = E(0, 1, fl, a) - E(0, 2, 0, d). (25) 

The results are given in Table II of Paper II. As in the barrier anticrossings, the 
contribution from Fourier coefficients with n 2 2 can be corrected for without increasing 
the errors. If these coefficients are made, then the four splittings can be written 

v,,, = X0 + X, cos [(2a/3)(?, - a)] - Y, sin [(2n/3)(; - a)] - X’, cos [(2rr/3)d]. (26) 

The J-dependent contributions to the coefficients can be obtained from the microwave 
data to yield the corresponding (J - 0) limits. 

^ _ 
&=A -DK+FJ&zo - (34 _ ~K,ab” 

(274 

2, = L (27b) 

Y, = &f.zy) + dma\3’ (27~) 

J?‘, = p3~\3a’ + [F + &zy’ - D,a14’. (274 

p, is insignificant here. 
The information in the two types of anticrossings can now be deduced from Eqs. 

(24) and (27). If DK is taken from the force field (23) and the average defined in Eq. 
(19) is used, then J?,, yields 

A”’ = k - DK,(p2)0 + 5’3:3K 
( 

;(I -cos3cu) . 
> 

(28) 
0 

Both f and D, can be set to zero because they cannot be determined. If Fe, is 
calculated by using Aeg and p” in Eq. (9) then 8; can be inserted in Eq. (27d) to 
obtain the effective height of the potential Ve3f. Further, 

* 
(X, - 2,) = F3Ka, (3a) _ DKmay’ (2% 

= _#D,ff 
I Km9 (2W 

where 

D$, = DKm + XF3K (W 

and 

x = -$Q’:‘. (30b) 

This demonstrates the origin of the three effective parameters in Table IV of Paper 
II; Eqs. (16) of Paper II have now been derived. The anticrossing data provide a 
fourth piece of information, namely the J dependence S in Eq. (24b) of the barrier 
anticrossing measurements. 

‘Two types of “effective values” have been now introduced, one labeled with a tilde 
and another labeled with the superscript efl The difference between the two should 
be kept clearly in mind. The tilde indicates the particular linear combination of 
molecular constants that arises from a transformation or a redundancy and cannot 
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be separated. This type of inseparability is similar to that first pointed out by Watson 
(24) for molecular centrifugal distortion constants. On the other hand, the superscript 
eflindicates that the particular linear combination of molecular constants cannot be 
separated because of the limitations of the data set. For example, if Aeff could be 
measured for three different torsional levels, then k, DKm, and F3K could be separated. 

V. ANALYSIS AND DISCUSSION 

1. Spectra with v d 2 

A least-squares analysis was carried out on the 72 rotational frequencies for 
v d 2 in Table II and the 15 anticrossing measurements for v = 0 in Table II of 
Paper II. The 14 independent constants obtained in the best fit by direct diagonahzation 
(Method III) are given in Table I here. For each rotational transition, the difference 
6 between the observed and calculated values is given in the current Table II. For 
the anticrossing splittings, these differences are not listed, but do not differ significantly 
from those given in Table II of Paper II. The overall fit is good, with a x2 of 44 for 
73 & The only lines which show any indication of a possible systematic error are 
those in the (J = 2 - 1) spectrum, where the experimental error was assumed to be 
100 kHz in the absence of error estimates in the original work (8). With Method II, 
it was shown that the fit cannot be improved by including more constants from Eqs. 
(5) and ( 10). As each additional parameter was tested, it proved to be undeterminable 
and/or did not improve the fit significantly. These parameters were therefore fixed 
at zero in the Table I model. 

The current model differs from the one used in Paper II in that now HJmm, HJKm, 
HJJ,, and Fh5 are included, while FgJ is excluded. In Paper II, with the limited 
microwave data available, F9_, was used rather than FhJ, in spite of the fact that F6/ 
is expected to be larger. This step was required to match the J dependence of both 
the rotational frequencies and the anticrossing splittings6 Now with frequencies from 
much higher values of J, it is possible to determine three H’s and reproduce both J 
dependences with F6J. If the current data set is analyzed using F9, instead of FeJ, the 
resulting best fit constants agree with those obtained in Paper II. However, because 
F6J is used here, there are small changes in Aeff, B, FjJ, and DJm. These changes are 
a measure of the model errors in these parameters due to the fact that the sextic 
constants are entirely empirical. For example, although the current data cannot de- 
termine v6 or [, computer experiments show that the introduction of these constants 
can change the J dependence, particularly at the sextic level, through their influence 
on the basis functions. 

With the larger data set now available, the least-squares errors in the constants in 
Table I are improved as compared with the results in Paper II, particularly for the 
constants associated with J-dependent matrix elements. In spite of this, it is very 
difficult to isolate the true values of the leading parameters. Attempts to separate Aeff 
and De& into k, D Km, and @SK essentially reproduced Table V of Paper II because 
these constants are determined almost entirely from the anticrossing splittings. The 

6 This use of F9, rather than Fw also occurred in a similar experiment on CH3SiF3 (25). 
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analysis yielded A” = 56 179 (75) MHz and vs = 592.2 (1.0) cm-‘. These two values 
still contain contributions from other terms, first through Eqs. (8b) and (13b), and 
second through the fact that various constants have been fixed at zero. The contri- 
butions are negligible compared to the error in k, but may be significant for fs. 

The difference (?, - p) as given in Eq. (8a) may be large compared to the least- 
squares error of 140 ppm. When k and I, are used to calculate the moment of inertia 
Z, of the methyl top, it is found that Z, = 3.165(5) amu-A2. This is in close agreement 
with the value of 3.170(2) amu-A2 obtained recently from similar experiments on 
CH3SiF3 (25). The agreement indicates that Ii; - pi 6 0.1%. 

The values obtained for DJ and DJK from the force field are 11 .O and 35.3 kHz, 
respectively (23). These are in reasonable agreement with the measured values given 
in Table I. Although both will be contaminated with sextic effects, the differences 
between the Table I values and the force field values should be dominated by un- 
certainties in the force field. These differences indicate the order of the discrepancy 
to be expected in the force field value assumed here for DK. The values of DJ and 
DJK assumed in Paper II were taken from a preliminary analysis of the current data. 

2. Spectra with v = 3 and v = 4 

The data for the higher torsional levels indicate that the existing model (2, 3, Z6) 
must be modified for the higher torsional levels. The (v = 3) data were considered 
first. All attempts to include the (v = 3) data in the fit failed. Regardless of which 
group of constants is added to those in the best fit model of Table I, the x2 remained 
two orders of magnitude larger than its value for the (v G 2) data set. In these fits, 
the magnitude of the (observed-calculated) values was typically 1 MHz for the 
(v = 3) lines as compared to the experimental error of -0.1 MHz. 

To investigate the disagreement further, the difference 6 between the measured 
values and the frequencies calculated from Table I were determined along with the 
differences between the torsional energy Z$’ calculated from Table I and Qff. As 
can be seen from Table III, E$’ and 6 show unusual patterns. For each K except 
K = 0, the set of three torsional sublevels includes one which is well below the barrier 
top, a second which is somewhat closer to the top but still below, and a third which 
is above. The barrier top falls roughly midway between the upper two levels, For 
each such triplet, 16) goes up by greater than or approximately a factor of 2 for each 
of the two steps up in energy. 

For each line, 6& = 6/[2(J + l)] was calculated. As can be seen from Table III, 
6& is a function of (K, a), but not of J. This shows that each (K, a) sublevel has an 
effective B value. For each (K, a), a mean G, was calculated by averaging over the 
J values for which measurements were made. In Fig. 1, 6B3 is shown to be a remarkably 
smooth function of Ep. 

In spite of the fact that 161 is over 10 MHz for many levels, there can be no doubt 
that the identification is correct. The evidence is conclusive, including arguments 
based on the clear separation of lines of different v for v < 4, Stark effect measurements 
for two lines, and close agreement among the 6B3 for different J but the same 
(K, a). The smooth dependence of SB, on E$’ is itself confirmation of the identification. 
It should be emphasized that the point with the largest 16BJI has (K = 0, u = 0), for 
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-683 IMHzl 

FIG. 1. Plot for (V = 3) of the average discrepancy 68, in the B value for each (K, a) as a function of 
the torsional energy difference (I$’ - @) from the top of the barrier. The typical error bar shown takes 
into account the errOr in the prediction. 0 for 1KI = 0; 0 for IKI = 1; A for IK( = 2; A for IKI = 3, and 
X for (KI = 4. 

which the experimental frequency has been measured twice earlier (2, 5, 8) and 
checked again here. 

The corresponding assignment for (u = 4) in Table IV is much less firm. The 
reasons for the difficulty are given in Section III. For (K = 0), the identification is 
virtually unambiguous, primarily because of the simplicity of the (J = 1 - 0) spectrum. 
For (K = + l), the assignment is also virtually firm, primarily because three lines have 
been measured for three different values of J including the relatively simple 
(J = 2 + 1). For K = 52, +3, and f4, the identification was made by using Fig. 2. 
The mean 6B, was calculated for K = 0 and K = +l, and then plotted against 
@’ - Vsff. As with (v = 3), a smooth functional form is obtained. It was then 
assumed that the other K values would fall near the same curve. As can be seen from 
Fig. 2, the resulting %& are consistent with this assumption. Furthermore, with the 
exception of the two lines indicated in the footnotes of Table IV and one very weak 
feature, the resulting assignment accounts for all the lines within the ranges spanned 
by the (u = 4) frequencies. As was the case for (v = 3), the lcrgest ~~ occur for the 
highest energy; the discrepancies range from a few hundred kilohertz for low energy 
to almost 2 MHz at the high end. 

For both (v = 3) and (u = 4) 6B, shows no simple functional dependence on K 
or u. For example, for (u = 3), (K = 0, c = 0) has the largest 1681 while (K = 0, 
u = f 1) has one of the smallest. The levels with the largest 16BI for (v = 3) have the 
smallest for (v = 4). This apparently follows from the fact that the order of E$’ with 
respect to (K, u) is reversed when u goes from 3 to 4. There is no obvious correlation 
between 6B and the symmetry of the states. 

It is clear that the origin of the 6B cannot lie in a complicated combination of 



TORSION-ROTATION STUDY OF CH,SiHS 107 
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FIG. 2. Plot for (u = 4) of the average discrepancy %& in the B value for each (K, U) as a function of 
the torsional energy difference (I$’ - VgB) from the top of the barrier. The typical error bar shown taken 
into account the error in the predictions. The assignments, particularly for jK/ > 1, must be regarded as 
tentative. 0 for IKI = 0; l for (KI = 1; A for IKJ = 2; A for IKj = 3, and X for IKI = 4. 

higher-order distortion effects. All the quartic constants in Eq. (5) involving the J 
dependence have been determined. No sextic term could possibly correct for the 
magnitude of the effect which is observed at low J and K. 

There are two general types of mechanism which can account for the behavior 
illustrated in Figs. 1 and 2. The Jirst is perturbation by a nearby vibrational state, 
which in this case would be the degenerate level (ui2 = 1). The accepted fundamental 
frequency for this mode is vi2 = 545 f 3 cm-’ (26, 27). On the (Er’ - V55) scale 
used in Figs. 1 and 2, this band origin falls at 52.5 cm-‘, which is 31 cm-’ above 
the highest (P) = 3) level. Figure 1 seems to require that the energy of the perturbing 
level be at most a few cm-’ away from the highest (u = 3) level. In an effort to 
investigate this possible perturbation, a high resolution infrared study of the perpen- 
dicular band was undertaken very recently (28). Preliminary results indicate that v12 
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is 20 cm-’ lower than the published value. However, the smoothness of the dependence 
of 6B3 on energy suggests that the dominant mechanism for the model failure is not 
such vibrational mixing. If it were, then the matrix elements involved would have 
to be very insensitive to K and u. In any case, detailed analysis of the vibrational 
band should clarify this point. 

It is clear from Figs. 1 and 2 that v12 cannot be responsible for 6B4; after all, the 
(U = 4) levels closest to v12 are perturbed the least. If v12 is causing 6B3, then the level 
(vg + yr2) is probably responsible for 6B4; v6 is the torsional mode. 

The second possible explanation is either a perturbation which does not involve 
the vibrational degrees of freedom at all or involves only vibrational levels that are, 
distant in energy. It is known from the computer searches that including higher terms 
in the potential such as v6 does not remove the discrepancy. At first glance, it appears 
that the failure of these searches and similar ones involving such constants as { 
eliminates this second possibility. However, such a conclusion is not justified. As a 
counterexample, consider a distortion in the potential which requires many Fourier 
coefficients to be properly represented. The information available would then be 
insufficient to determine the several constants required and the least-squares fit would 
not converge. To solve the problem in this case would require a priori introduction 
of a suitable form for the distortion. 

In CHsSiFs, a similar comparison between experiment and theory led to similar 
conclusions (25). For (v = 3), a 6B was observed with a larger magnitude for the 
levels whose energy falls above the top of the barrier. In that case, it was possible to 
resolve only (a = 0) from (a = + 1); the K splitting was not resolved. Furthermore, 
no (U = 4) data were available. As a result, the information obtained on 6B was far 
more limited. However, it is clear that a similar type of effect is occurring and that 
the modification required of the Hamiltonian is not peculiar to methyl silane. 

Work is continuing on CH3SiH3 in an effort to understand better the problem of 
internal rotation. Several different techniques are involved, including molecular beams. 
Fourier transform spectroscopy, and diode laser spectroscopy. 

VI. ISOTOPIC STUDIES 

Pure rotational spectra in the ground torsional state were studied briefly for 
i2CHs3’SiH3, 12CH329SiH3, and ‘3CH328SiH3 in natural abundance. The frequencies 
measured are listed in Table V. The three (J = 1 + 0) lines had been measured 
previously (20, 29). Small differences exist with the current values, but these are not 
considered to be significant since no experimental errors were assigned to the original 
measurements. 

The present data for 12CH330SiH3 have been used in two earlier works in this series. 
First, a rigid rotor analysis was used to determine that the effective B value B. for 
(u = 0) is 10 806.90 (20) MHz. This constant is fi (v = 0, K, a) averaged over Kand 
u since the torsional splitting cannot be resolved for r.~ = 0 with conventional microwave 
methods. The corresponding number for the parent species ‘2CH328SiH3 is 10 968.964 
(50) MHz. Both values of B. were used in treating the Stark effect in Paper I. Second, 
the true value of B as defined in Eq. (15) measured here for ‘2CH330SiH3 was used 
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TABLE V 

Pure Rotational Frequencies (in MHz) for Various Isotopic Form of Methyl Silane in the (v = 0) State 

ISOtOp 
Lower statea 

Observed Value 
Observed Previous 

.J K -Calculated xeasurementsb 

“CH 30. c 3 SlH3 o 0 21 613.701 (030) -0.055 21 613.06 Ref.(s) 

3 I 86 452.117 (100) 0.008 

3 2 86 451.005 (100) -0.039 

3 3 86 449.421 (100) 0.184 

’ %H d 3 “SiH 3 0 0 21 770.978 (030) -0.010 21 771.08 Ref.(20) - 

3 1 86 080.950 (070) -0.057 

3 2 86 079.950 (070) -0.022 

4 I 108 849.343 (070) -0.023 

4 2 108 848.113 (070) 0.078 

4 3 108 845.767 (100) -0.009 

4 4 103 842.776 (200) 0.194 

’ %H 28. e 
3 slH3 o 0 21 212.736 (030) 21 213.04 Ref.(g) 

a-The 4 splitting was not resolved. The fits were made by setting the 
calculated frequency equal the average over 0 weighted by the intensities. 

b-No experimental errors were quoted in the original works. 

c-The fit was made to these microwave data and the anticrossing splittings 

in Table II of Paper II. B, A, oand V3 were varied; all other constants 

were fixed at the values for the parent species. 

d-Only B was varied. Small corrections for the isotopic substitution were 

made to the values of A and P of theSi-28 species. The remaining cOnstan& 
were fixed at the Si-28 values. 

e-Only B was varied. All other constants were fixed at the C-12 values. 

in Paper II along with the anticrossing measurements to obtain Aeff, Vrjff, and P. The 
isotopic changes in these parameters are discussed in Section VI of Paper II. 

Here the data is used along with existing measurements on ‘2CH328SiD3 (8) and 
‘2CD328SiH3 (9) to obtain a structure that is based only on symmetric top rotational 
constants that have been corrected for internal rotation effects. The rotational constants 
and moments of inertia used are summarized in Table VI for all six species used, 
including the parent. For ‘2CH328SiD3, the nine observed frequencies (8) for 2, < 2 
were analyzed by fitting B, DJ,,,, FxJ, Fa, and dJ. For ‘2CD328SiH3, the four frequencies 
(9) for ZI < 2 were analyzed by fitting B, DJ,,,, FxJ, and FeJ; dJ did not enter because 
K = 0 for all the spectra. In both cases, Aeirand j? were corrected for deuteration and 
left fixed. The distortion constants that were not varied were fixed at the values for 
the parent species. For the on-axis isotopic substitutions, the analysis methods are 
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TABLE VI 

Rotational Constants and Moments of Inertia for Some Symmetric Top 
Isotopic Forms of Methyl Silane4b 

Isotope B (MHz) Ib(amU - A2) 

’ 2CH328SiH3 10 986.095 (5) 46.0017 (2) 

' 2C”329SiH3 10 902.710 (IO) 46.3535 (4) 

12 
CH330SiH3 10 824.095 (IO) 46.6902 (4) 

13C” 28 

3 S1”3 
IO 623.585 (15) 47.5714 (7) 

’ %D 28 

3 SLH3 

c 
9 132.18 (IO) 55.3405 (60) 

12C” 
28. c 

3 SlD3 
9 636.609 (50) 52.4437 (28) 

a - For I 2CH328SiH3, A = 56 179 (75) MHz and I, = 

8.996 (12) amu - A2. 

b-The moment of inertia I, of themethyl top in 

12CH328SiH3 is 3.165 (5) am - A*. 

c-B for 12CH3SiD3 and 12CD328SiH3 were obtained 

by analysing data taken from Ref.(g) and Ref. 

(21, respectively. 

given in Table V. In all cases the final value of B was insensitive to the details of the 
model used. 

In Table VII, the structure obtained is compared to that obtained from an analysis 
of 23 different isotopic species (29, JO), most of which were asymmetric rotors. This 
earlier analysis used a PAM treatment of internal rotation that included only the 
leading term, viz., the first term in Eq. (6). The two structures agree very well. The 
current structure calculation is a little more accurate, but of greater importance is 
the demonstration that the two different methods give consistent results. 

TABLE VII 

The Structure of Methyl Silane 

r(SiH) A 

L ("C") degrees 

r(CSi) A 

r(C”) 8, 

L (HSiH) degrees 

L(CSiH) degrees 

Present Work 

1.482 (2) 

108.03 (II) 

1.864 (I) 

1.095 (I) 

108.49 (14) 

I IO.41 (IO) 

Ref. (3# 

1.484 (5) 

108.00 (50) 

1.867 (I) 

1.092 (5) 

108.73 (50) 

110.20 (50) 

a-These results were obtained in Ref.(s) by reanalysing 

the data in Ref. (2). 
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