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The avoided-crossing molecular-beam electric-resonance technique was applied to methyl 
silane in the ground torsional state. A new type of anticrossing is introduced which breaks 
the torsional symmetry and obeys the selection rules AJ = 0, K = +l ++ -1. For these 
“barrier” anticrossings, the values of the crossing fields &Z= yield directly the internal rotation 
splittings; the & are independent of the difference (A-B) in the rotational constants. Such 
anticrossings were observed for J from 1 to 6. Studies were also conducted of several “rota- 
tional” anticrossings (J, K) = ( 1, +l ) c~ (2, 0) for which & does depend on (A-B). The 
normal rotational transition (J, K) = (1, 0) + (0, 0) was observed in the ground torsional 
state using the molecular beam spectrometer. The present data on CH,%iH, were combined 
with Hirota’s microwave spectra and analyzed with the torsion-rotation Hamiltonian including 
all quartic centrifugal distortion terms. In addition to evaluating B and several distortion 
constants, determinations were made of the moment of inertia of the methyl top Z, = 3.165(5) 
amu-A*, the effective rotational constant AeR = 56 189.449( 32) MHz, and the effective height 
of the threefold barrier to internal rotation Vcrr - 3 - 592.3359(73) cm-‘. The correlations leading 
to these two effective constants are discussed and the true values of A and V, are determined 
within certain approximations. For the isotopic species CHJ3’SiHI, barrier and rotational 
anticrossings were observed. The isotopic changes in A and V, were determined, as well as 
an upper limit to the corresponding change in I,. 

I. INTRODUCTION 

Internal rotation has long been a fascinating problem in molecular spectroscopy 
(I, 2). Although many detailed, high-precision studies have been conducted for the 
asymmetric rotor, none have been previously carried out for the symmetric top, in 
spite of the far greater simplicity of its torsion-rotation Hamiltonian X’TR. The 
difficulty lies in the fact that the leading barrier-dependent terms in the energy 
depend only on quantum numbers which are conserved in electric dipole transitions 
within the ground vibronic state. These terms therefore do not affect the pure 
rotational spectrum and cannot be measured by conventional microwave spec- 
troscopy. 

To overcome this difficulty, the torsional satellite method was introduced by 
Kivelson in 1954 (3). This technique makes use of the fact that centrifugal distortion 
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effects on the leading barrier terms do depend on J and so will affect the normal 
(U = 21) transition frequencies. With a typical microwave spectrometer, the 
resulting splittings are too small to be resolved in the ground torsional state, but 
can be observed in higher torsional levels. The torsional satellite pattern is rather 
insensitive to the barrier height; furthermore, the analyses to date have depended 
on the calculation from the structure of the rotational constant about the symmetry 
axis. Nevertheless, this method is the best of the conventional techniques available 
for studying symmetric tops and has been applied to many different molecules. 

Very recently, an alternative approach (4) was introduced based on the avoided- 
crossing molecular-beam electric-resonance (MBER) method (5, 6). In this tech- 
nique, two levels with different K are brought to an avoided crossing by an external 
electric field 8. In the anticrossing region, the (AK = 0) selection rule is broken; 
depending on the specific mixing interaction involved, the other selections rules 
dealing with the conservation of the torsional and nuclear spin parts of the wave- 
function can be violated as well. Once the electric dipole moment p is known, the 
measurement of the “crossing” field gc at which the two levels have their minimum 
separation can be converted to a determination of the corresponding zero-field 
splitting A,,. Practical difficulties that arise when C, becomes large limit such ex- 
periments currently to cases where A,,/p B 5 GHz/D (7). This method of measuring 
the K dependent terms in 2? TR was applied to CH,CF3 to determine the rotational 
constant A, the height V, of the threefold barrier to internal rotation, and the 
moment of inertia 1, of the methyl top (4). 

In its original form, the avoided-crossing technique was restricted to “rotational” 
anticrossings in which IKI changed so that AO contained a large term proportional 
to (A-B), thereby allowing A to be obtained. However, because of the limit on 
&o/p, anticrossings of this type cannot be used to study internal rotation in mol- 
ecules with large (A-B). As a result, the original method cannot be applied to the 
very important class of symmetric tops which have only hydrogen (or deuterium) 
atoms off axis. 

In the current work, the anticrossing method was extended in two directions to 
overcome this limitation and has been applied to CH3SiH3. This particular molecule 
was selected because it has served as the prototype for the torsional satellite method. 
The older studies of this type (3, 8, 9) have been greatly extended with new mi- 
crowave data which will be presented in a later paper (20). The two techniques 
together provide an excellent test both of each other and of the model currently 
in use for internal rotation. 

The first extension of the MBER method consists in demonstrating that anti- 
crossings between different torsional sublevels are allowed satisfying the selection 
rule K = + 1 * - 1. In this case, & depends only on the difference in the torsional 
energies; the leading barrier-dependent terms in a polar symmetric top can be 
measured regardless of the values of the rotational constants. Such “barrier” 
anticrossings have been observed in CH3*%iH3 for J = 1 to 6. These measurements, 
of course, do not allow for a determination of the moment of inertia 1, of the 
molecule about the symmetry axis. 

The second extension of the MBER technique overcomes this difficulty. Although 
the values of &= for the (AJ = 0, AIKI f 0) “rotational” anticrossings observed in 
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CH3CFa are far too high in CH3SiHa, such anticrossings with (AZ # 0) can, in 
principle, occur at much lower fields provided there is a partial cancellation in 
A,, between the terms involving (A-B) and B. While these have been predicted 
(6), they have not been previously observed. In CHj2*SiH3, six different anticross- 
ings of this type have been detected with (J, K) = (1, +l) *--) (2,0), thus providing 
for a determination of A. 

The precision Stark measurements required to calculate the various & from the 
observed gE have been described in Paper I (II) of this series on methyl silane. All 
the MBER spectra observed in these two papers were for the ground torsional state. 

A thorough analysis was carried out of the anticrossing results and the best 
existing microwave absorption (8) along with the MBER determination in the 
present work of the frequency of the (J = 1 - 0) rotational transition. The torsional 
Hamiltonian XT was diagonalized after suitable truncation. Centrifugal distortion 
effects were taken into account in both overall and internal rotation. In CHj2*SiH3, 
measurements were made of B, Z,, and several distortion constants. Effective values 
were obtained for A and V,; the origin of these effective constants and the deter- 
mination of the true values are discussed. For CHs3’SiH3, both barrier and rota- 
tional anticrossings were observed; these were used to determine the isotopic 
changes in A and V3, as well as to place an upper limit on the corresponding change 
in Z,. 

II. REVIEW OF TORSION-ROTATION THEORY 

For a symmetric rotor in the ground vibronic state, the torsion-rotation Ham- 
iltonian zra can be written using the internal-axis method (IAM) as (2, 8) 

X-r, = BJ2 + (A - B)Jt + Fp2 + V(Q) + %‘n. (1) 

The first two terms form the Hamiltonian Xa describing the rigid overall rotation, 
while the next two form the Hamiltonian &“T describing the torsional motion. The 
last term #‘n takes into account various distortion effects. J is the total angular 
momentum (exclusive of nuclear spin) and J, is its component along the symmetry 
axis L The torsional oscillation is also around the z^ direction in a symmetric rotor; 
(Y is the torsional angle between the methyl top and the silyl frame. The quantity 
p = (l/i)(a/&r) is th e angular momentum of the internal rotation. For simplicity, 
the primes used by Lin and Swalen (2) have been dropped. The IAM p is related 
to the torsional angular momentum in the principal-axis method (PAM) by a simple 
transformation (2) 

P = (PRAM = (P)PAM - PJ, ; (2) 

p is defined to be that constant which eliminates the coupling term between J, and 
(p)PAM in the PAM torsion-rotation Hamiltonian. If &“n = 0, then 

p = z, /z. . (3) 

The rotational constant B is related in the usual way to the moment of inertia Zb 
about an axis perpendicular to 2. The rotational constant A is similarly related to 
Z,. The reduced rotational constant 
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F = h2Z,,/[2Z,(Z, - Z,)]. (4) 

The potential barrier V(a) to internal rotation can be expanded in a Fourier series 

V(ol) = 2 v,,; (1 - cos 3na). 
n=l 

(5) 

The expansion coefficients V,, fall off so rapidly with increasing n that only the 
lower-order terms in the series need be retained. 

From the general theory for the interaction between torsion-rotation and vibra- 
tion (Z2), %‘n can be written to lowest order as’ 

J?n = -DJ” - D,,J2J: - D,J: - [D.,,,,J2 + D,,J; + D,,,p2]p2 

- [t&J2 + c&J: + &p2]J,p + fi ; (1 - cos h4L.,J2 + bcJ:l. (6) 
?I=1 

The first three terms are -present for all symmetric rotors, while the others are 
particular to systems which undergo internal rotation. The sum on n can be trun- 
cated after two or three terms because the series converges very rapidly. The various 
constants appearing in Eq. (6) are complicated functions of the intramolecular 
force field (12). Here they are treated as fitting parameters to be determined from 
experiment. Three of these constants were introduced in Kivelson’s original work 
(3) and subsequently used by Hirota (8). In terms of the older notation, these can 
be written 

F,, = ~Fv, Ua) 

DJ, = -Gv, (7b) 

dJ = -Lv. (7c) 

The subscript Y here does not refer to the torsional quantum number. 
The eigenvalues E TR of R’rR can be labeled by the quantum numbers (uJluam,). 

The torsional levels are distinguished by u = 0, 1, 2. . . . The torsional sublevels 
of symmetry A and E are labeled by (a = 0) and (a = f 1), respectively. Each 
eigenvalue can be classified according to the irreducible representation r by which 
the corresponding torsion-rotation eigenfunction transforms under the operations 
of the group G18 (13). An example of the energy level structure and labeling is 
shown in Fig. 1 for K = 0, where X’= has two distinct eigenvalues, and for K 
= 1, where ..%?=n has three. The quantum number mJ is the eigenvalue of the com- 
ponent of J along the space-fixed 2 axis; the external electric field &‘, when it is 
applied, lies along this axis. 

To calculate ETR, the distortion term .P’n is treated as a perturbation. The ei- 
genfunctions of the zeroth-order Hamiltonian X0 = %‘n + .9?= can be written 

tir = lJKmJ > J&J(Y). (8) 

’ There are additional terms which should be included in Eq. (6), but these are redundant with the 

terms already present in XTl. This type of redundancy has been discussed by R. M. Lees and 
J. G. Baker, J. Chem. Phys. 48, 5299-5318 (1968). These additional terms will be discussed in detail 

in Ref. (10). 
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FIG. 1. Schematic plot against the electric field of the energy levels of the (J, K) = (1, ?l ) and (2, 
0) states involved in the rotational anticrossings studied. Upper signs go with upper and lower with 
lower. For clarity, the quadratic Stark effect of the (K = 0) states has been exaggerated. The nuclear 
magnetic quantum numbers have been omitted and the hyperfine effects neglected. The repulsion between 
interacting levels near the avoided crossings is not shown. All 12 anticrossings were detected, but precision 
measurements of the crossing fields were made only for those indicated by heavy dots. 

Because there is no coupling between overall and internal rotation, the problem is 
separable. The symmetric top functions IJKm,) diagonalize ZR. The torsional 
functions MVKO diagonalize XT. These can be expanded in a Fourier series (2) 

m 

where 

~“&Tb) = Xrn A’;f+ZZi;Ck+o 9 

GC+, = l - exp[ia(3k + u - pK)]. 
(2*V2 

(9) 

(10) 

The expansion coefficients A St+,, and the unperturbed energy E $” are calculated 
by diagonalizing for each (K, a) the matrix for XT set up in the Z representation. 
This matrix is truncated in k after enough terms are included that the energy 
obtained is sufficiently accurate for the highest o of interest. 

The effect of R’n is then treated with first-order perturbation theory. This term 
is diagonal in J, K, mJ, and u, but has matrix elements off-diagonal in V. To test 
whether the higher-order perturbations are important, the matrix for (A?= + Z’,,) 
was diagonalized for each (v, J, K, a) using representation (8). For the low J values 
studied here, the difference between the two calculations was negligible. 
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FIG. 2. Schematic plot against electric field of the energy levels for the (K, c) = (+l, T I ), (Tl, ?l ), 
and (Tl, 0) states with J = 1 involved in the barrier anticrossings studied. The two heavy dots indicate 
the avoided crossings for which precision measurements of the crossing field have been made. With one 
exception, upper signs go with upper and lower signs with lower. If the third intersection were an avoided 
crossing with the same characteristics as the other two, then the third case would be the exception: upper 
signs would go with lower and vice versa. However, this third intersection seems to be a true crossing 
since no anticrossing transitions could be detected. 

III. EXPERIMENTAL DETAILS 

The experimental methods and conditions used for the anticrossing measurements 
were very similar to those in the Stark experiments on methyl silane in Paper I* 
and those in the earlier avoided-crossing studies (6, 7). The basic MBER apparatus 
used has been described in detail elsewhere (14). The source conditions for the 
seeded nozzle beam were the same as those used in Paper I to study the low K 
Stark transitions. The Pyrex plates of the C field (7) were coated in the parallel 
plate configuration, which gives better homogeneity, but permits only transitions 
with Amr = 0, where MT is the eigenvalue of the component of the total angular 
momentum along 6. The transition region was 30 mm long, giving a time-of-flight 
linewidth AL+ - 15 kHz and field inhomogeneities -20 ppm. For each isotopic 
species, the mass-to-charge setting of the detector was the same as that for the 
Stark studies in Paper I. The techniques employed to calibrate the electric field 
and to measure the crossing fields have been discussed in detail elsewhere (6, 7). 

For the (J = 1 - 0) rotational transition at 22 GHz, the C field was similar to 
that described by Dijkerman et al. (15). It consisted of a parallel plate system in 
combination with a microwave horn. In the frequency range 12 to 40 GHz, sym- 
metric lineshapes are obtained with a full-width at half-maximum of 13 kHz. 

IV. DETERMINATION OF THE ZERO-FIELD SPLITTINGS 

1. The Barrier Anticrossings 

From the energy level diagram in Fig. 2 showing the torsional splittings and 
Stark effect for IKI = 1, lntJl = 1, it was initially anticipated that three different 

’ Paper 1 refers to Ref. (II). 
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anticrossing systems could be studied. Only two of these proved to be observable. 
In both of these, the level (a) of higher energy in zero field has I? = Es. When the 
level (/3) of lower energy has I’ = E2, both levels are of E torsional symmetry; this 
is called an EE anticrossing and A,, = uEE. When level (@) has T = El, one of the 
interacting levels has E torsional symmetry and the other has A; this is called an 
EA anticrossing and & = u E,+ In spite of several careful attempts, the second EA 
anticrossing between upper level (T = E,) and lower level (l? = E,) was not detected. 
Since this same behavior occurred for CH3SiF3 (16), it has been tentatively con- 
cluded that mixing between (I’ = E,) and (r = E,) is forbidden by symmetry. 

Careful consideration must be given to the selection rules for all the quantum 
numbers of the interacting levels. Each anticrossing system involves many levels 
because of the “sign-doubling” (6) shown in Fig. 2 and the nuclear spin magnetic 
quantum numbers rn; and rn; for the top and frame total proton spins, respectively. 
For each system in Fig. 2, there were initially three possible assignments. One 
consists of a series of separable two-level interactions in which AK = k2, Am, 
= 0, Am’, = AmL = 0. The second consists of a similar series in which AK = 0, 
Am, = +2, A(m’, + rng) = 72. The third consists of a series of separable multilevel 
interactions formed from a hybrid of the first two. When a magnetic field was 
applied the frequency and intensity did not change. This eliminates the second 
assignment, since such a spectrum would split into two lines, each moving with an 
effeCtiVe g factor geff apprOXhIately twice the proton g factor gH (See Eq. (19) Of 
Ref. (6)). Furthermore, no satellite lines were observed; this eliminates the third 
assignment as can be seen from the discussion of Fig. 2 in Ref. (6). 

To investigate the selection rules further, attempts were made to observe a variety 
of other barrier anticrossings. It was firmly established that such avoided crossings 
with AIKI = 0 occur only for IKI = 1. This is not surprising, since otherwise the 
mixing would require an interaction of rather high tensor rank. The many anti- 
crossings searched for with IKI = 1 are listed in Table I. Although the changes in 
mJ could be easily established from the second-order Stark effect and/or the effect 
of an external magnetic field, in many cases the changes in rn: and rnk could not 
be uniquely determined because the nuclear g factors for the top and frame are 
equal. The selection rules deduced can be summarized as (J, K, CT, I’) = (J, +l, 
~1, Es) * (J, ~1, ~1, E,) for the EE anticrossing and (J, +l, ~1, Es) c-, (.I, 
+l, 0, E,) for the EA anticrossing, with Am, = 0, kl, Tl, *2, T2 for both types. 
Unless otherwise specified, it can be assumed throughout that upper signs go only 
with upper and lower only with lower. 

From these selection rules, it is clear that the mixing matrix element n arises 
from nuclear hyperfine interactions. A complete understanding of this mixing re- 
quires a full study of the hyperfine Hamiltonian for a molecule of Gls symmetry, 
similar to that done earlier for C,, symmetry (6). Such a study is currently un- 
derway. However, the preliminary conclusion can be drawn that, since AmJ can 
equal &2, the spin-spin interaction &“ii provides at least part of the mixing when 
Am, = 0. There is strong evidence that Z,i, in fact, dominates the (Am, = 0) 
mixing. The EA and EE (Am, = 0) anticrossings for (J = 3, mJ = 22) were 
unobservable, in spite of the fact that similar signals were detected for many other 
(J, mJ) values. Since the factor [3m$ - J(J + l)] occurs in the q with AmJ = 0 
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TABLE I 

Summary of the Selection Rules Investigated for Barrier Anticrossings in CH$iH, 

.J Upper state a 
K = kl 

1,2,3,5.6 +l E3 

2 71 E3 

3 Tl E3 

1 +1 E3 

2.3 +1 E3 

3 71 
E3 

2 51 E3 

3 Tl 
E3 

’ 1,2,3,5 

2 

3 

2 

4 

+1 E3 

Tl 
E3 

71 E3 

71 E3 

+1 E3 

1.2 +l E2 - 

Lower state B 
K' -71 

AmJ 
Label Remarks 

+Ja 0 - 

+1 0 - 

+2 0 

0 0 

0 0 

+1 0 - 

+2 0 - 

+3 0 

+Ja Tl - 

+1 +1 - 

+2 Tl 

0 71 

+2 Tl - 

+Ja 0 - 

El AJa 

El 21 

El +2 

El +l 

El 22 

El 23 

E1 0 

El tl 

E2 +Ja 

Kg 21 

E2 +2 

K2 +I 

E2 51 

El +Ja 

0 

0 

0 

+1 

T2 

T2 

+2 - 

+2 - 

0 

0 

0 

71 

+1 - 

0 

EA 

EA 

EA 
not 
observed 

EA 

E.A 

EA 

EA 

EA 

EE 

EE 

EE 

EE 

not 
observed 

EE 

EA 
not 
observed 

a - The labelling means mJ = m ’ 
J 

= +J for the J-values in the first column. 

for al1 spin-spin interactions and this factor vanishes for (f = 3, mJ = +2), zlI 
seems to provide the mixing mechanism for the barrier anticrossings. 

The particular anticrossings with (hm, = 0) are very unusual in that, aside from 
the change in Q, the only difference between the interacting levels is in the sign of 
K. Thus, except possibly for very small u-dependent effects, the upper level (a) and 
the lower level (/I) have the same second-order Stark effect, the same diagonal 
hyperhne matrix elements, and the same Zeeman effect. This means that the cross- 
ing field C, is independent of the effective anisotropy (crl - CX& in the polarizability 
(see Paper I), the nuclear hyperline constants, and the g factors. The value of &, 
depends’only on the torsional splitting and the effective dipole moment p&J, K) 
defined in Eq. (1) of Paper I. These anticrossings are therefore ideally suited to 
precision studies of the barrier parameters. 

Although this precision requires the full analysis described in Section II, con- 
siderable insight into the problem can be obtained from a much simpler treatment. 
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The value of Xn is neglected. The torsional energy E $‘I is represented by a Fourier 
expansion (2) 

E $“(uKu) = 5 a,(u)f’ ~0s F (pK - a) 1 ) (11) n=O 
where the expansion coefficients a,(u) are functions only of the reduced barrier 
height s = 4V,/9F, which equals 32 for methyl silane. For the ground torsional 
state, the case of interest here, ]a,/~~] Z 3000 and only the first term is retained. 

In this approximation, 

VEE = -alF31/2 sin (2?rp/3); (12a) 

YEA = -aiF[(3/2) cos (2?rp/3) + (3’/‘/2) sin (2ap/3)]. (12b) 

These equations can be represented by a triangle whose sides are vEE, vEA, and 

(3/2)lo,~l. Angle (r/3) is opposite (3/2)hFI and angle (2?rp/3) opposite vEE. 

Equations ( 12) can be easily inverted: 

tan (2~/3) = (3"2/2)vEE/[vEA - bEE/2)1, (13a) 

t&d = (2/3)biA + vh- vEAvEEii'2e (13b) 

These equations show that, for each J, the parameters p and lalFl can be determined 
independently. If A is known, then p will give Z,, while A, p, and a,F will give V,. 
Further, it is important to note that p depends only on a ratio of zero-field splittings. 
Since the measured values of vEE and VEA depend to excellent approximation only 
on the linear Stark effect for (Am, = 0) anticrossings, p is independent of the dipole 
moment p&J, K) involved. 

The crossing field Q, was measured for each of the barrier anticrossings listed 
in Table II. The J values ranged from 1 to 6. The gC fell between - 1700 and 
-6000 V/cm for the EA cases and between - 1200 and -3600 V/cm for the EE 
cases studied. The full-width Av,,,,~ at ‘half-maximum observed for all transitions 
was -20 kHz. For 1 < J s 3, the signal-to-noise ratio on a single sweep with a 
time constant of 1 set varied from 7 to 30. A signal averager was used for the 
weaker of these lines as well as for the (J = 5) and (J = 6) transitions. 

To obtain each & from its gC, the computer program developed for the Stark 
study in Paper I was used to calculate the frequency (i.e., p0) and error for the 
corresponding forbidden transition. The error obtained in this way takes proper 
account of all of the correlations among the Stark parameters. This dipole error 
was then combined in quadrature with two others: the frequency error from de- 
termining center of the anticrossing lines and the calibration error of 20 ppm (6) 
from the long-term stability of the voltage source. For these absolute measurements, 
the total uncertainty was dominated by the calibration term with a small contri- 
bution from the dipole term; the frequency error was negligible. Each measured 
& and its error are given in Table II. 

For properly chosen cases, the accuracy in the difference between two distinct 
A,, can be improved considerably by observing both anticrossings in the same electric 
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TABLE II 

Energy Splittings A,, in MHz of CH3**SiH3 from Anticrossing and Microwave Experiments 

” Upper state Lower state Observed Obsemed- Label 
.I K or J' K' a' r' Splittim Calculatnd 

0 1 

0 1 

0 1 

0 1 

0 1 

0 2 

0 3 

0 5 

0 6 

0 

0 1 

0 2 

0 3 

0 5 

0 

+l +l E2 

+l 0 El - 

+l 21 E2 - 

+1 0 El - 

+l 71 E3 - 

+l Tl E3 - 

+1 +1 E3 - 

+1 +1 E3 - 

+l Tl E3 - 

UEA u = 2) 

+l +1 E3 - 

+l +1 E _ 3 
+1 +1 E - 3 
+l +1 E3 - 

VEE(J = 2) - 

0 1 0 0 A2 

0 1 0 +1 E4 

1 1 0 OA2 

11 0 +1 E4 - 

2 1 0 OA2 

2 1 0 21 E4 

0 2 21 0 El 

0 2 21 &l E2 

0 2 +l - +1 E3 

1 2 21 0 El 

1 2 +1 +1 E2 

1 2 +1 Tl E3 

2 2 21 0 El 

2 2 21 fl E2 _ 

2 2 51 Tl E 3 

2 0 OAl 1 623.282 (33) 

2 0 OAl 1 424.729 (29) 

2 0 51 E4 1 059.961 (22) 

2 0 +1 E4 861.392 (18) 

1 Tl 0 El 635.637 (13) 

2 Tl 0 El 635.704 (13) 

3 +1 0 El 635.792 (13) 

5 +1 0 E 
1 

636.037 (14) 

6 +1 0 El 636.211 (16) 

--v KA (J = 5) -0.3276 (80) 

1 71 +1 E2 437.083 (9) 

2 +1 Tl E 2 437.114 (9) 

3 +1 +1 E2 437.173 (9) 

5 71 +1 E2 437.340 (9) 

"gE(J = 5) -0.2199 (50) 

0 0 OAl 21 937.885 (10) 

0 0 +1 E4 21 937.913 (10) 

0 0 OAl 21 873.10 

0 0 +1 E4 21 872.46 

0 0 OAl 21 808.85 

0 0 +1 E4 21 814.41 _ 

1 +1 0 E 
- 1 

43 87F1.28~ 

1 +l - +l E2 43 875.2Eb - 

1 +l - Tl E3 43 875.2Eb 

1 +1 0 El 43 745.41 

1 +l - +l E2 43 744.75 - 

1 +1 Tl E3 43 743.88 

1 +1 0 El 43 618.53 

1 tl +1 E2 43 622.73 

1 +1 71 E3 43 632.89 

-0.009 

0.007 

0.001 

-0.000 

-0.015 

-0.002 

0.004 

0.004 

0.015 

-0.0007 

0.000 

-0.005 

0.000 

0.005 

-0.0043 

v+l,O 

vo.o 
"+1&l 

"a,+1 

'EA 

'EA 

'EA 

'EA 

"EA 

Relative 

"EE 

"EE 

'EE 

'EE 
Relative 

-0.001 1+0 

0.003 I+0 

0.076 l+oa 

0.111 l+oa 

0.018 l+oa 

0.057 l+oa 

-0.061 2+la 

-0.079 2+la 

-0.115 2fP 

0.016 2+1a 

-0.10s' 2+la 

0.004 2+la 

0.030 2fla 

0.014 2fla 

-0.083 2fla 

a - These frequencies were taken from Ref. (8). 
100 kHz. All other data are from the present 

The errors used in the fit were 

b - This triplet was not resolved. 
investigation. 

three, 
In the fit, we used the average of the 

weighted by the relative intensities. 

field (6). In this way, the EA and EE zero-field splittings were determined for (J 
= 2) relative to those for (J = 5) from the avoided crossings (J, K, m,) = (2, +l, 
+l) ++ (2, ~1, kl) and (5, +l, k5) ++ (5, ~1, k5). The calibration error was 
reduced to a negligible 2 ppm arising from the short-term stability of the voltage 
source. The total error now is dominated by the dipole term with a small contri- 
bution from the frequency term. The results are presented in Table II. 
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2. The Rotational Anticrossings 

For an accurate determination of A, the observation of an anticrossing with 
AlKl # 0 is required. Because of an almost complete cancellation in A,-, between 
the term in (A-B) and that in B, the pure rotational contribution to the zero-field 
splitting for the avoided crossing between (J, K) = (1, kl) and (2, 0) is only - 1.3 
GHz. The energy level scheme for this “rotational” anticrossing is illustrated in 
Fig. 1. Because of the focusing requirements for detecting the anticrossing signals 
(6), only the anticrossings involving a focused lower state (8) can be observed, so 
that the (2, 0) levels involved can have mJ = 0 or +l, but not +2. Because of the 

. torsional splittings, there are 12 possible anticrossings of this type, six with AlrnJI 
= 0 and six with AmJ = +l. Since AK = f 1, the symmetry breaking terms in the 
total Hamiltonian that mix the anticrossing levels must arise from the nuclear 
hyperfine interactions (6). All 12 anticrossings were detected. 

The four strongest avoided crossings with AlmJl = 0 were selected for accurate 
measurement of their crossing fields. For each one, the zero-field splitting 4 has 
been assigned a specific label Y,,+ In order of decreasing magnitude, these are 
v*~,~ for (J, K, a) = (1, +l, +l) w (2, 0, 0); vo,o for (1, *l, 0) t* (2, 0, 0); 

vil,*:l for (1, +l, *l) * (2,0, +l); VO,+I for ( 1 , 2 1,O) t+ (2,0, + 1). The anticrossing 
transitions were observed with signal-to-noise ratios between 2 and 6 for a single 
sweep with a time constant of 2 sec. The actual measurements were again taken 
with a signal averager. The observed linewidth Av,,,~ was -28 kHz arising from 
an inhomogeneity contribution to -24 kHz and a time-of-flight contribution of 
-15 kHz. 

The values of the & and their errors were calculated with the same procedures 
as were used for the barrier anticrossings in Section IV.1. The results are given 
in Table II. In this case, the calibration error ranging from 17 to 32 kHz was 
dominant. Although the rotational anticrossings can have a frequency shift due to 
the nuclear hyperfine interactions, this effect is a few kilohertz at most and is 
insignificant compared to the calibration error. 

The internal consistency of the data can be demonstrated by comparing various 
combination differences. From Table II, (Y~,~ - vO,*,) = 563.337 MHz and (~*i,~ 
- Y*,,*,) = 563.321 MHz. From Fig. 1, these should be equal, as indeed they 
are to well within the experimental error. Furthermore, from Table II, (Y*,,*, 
- vo,*,) = 198.569 MHz; (v+~,~ - v~,~) = 198.553 MHz; and, for (J = l), (yEA 
- vEE) = 198.554 MHz. Again, these differences should be equal and do agree to 
well within the error. 

3. The Isotopic Species CH,‘OSiH, 

Valuable insight into the internal rotation problem can be obtained from isotopic 
effects. For CHa3’SiH3 in natural abundance, measurements were made of three 
different (bJ = 0) barrier anticrossings. In each case, the isotopic shift in Q, 
corresponds to a frequency difference of only a few hundred kilohertz. This made 
it possible to measure Q, for CH330SiH3 relative to b, for CH3%iH3, thus consid- 
erably improving the accuracy in the difference (6). By using the isotopic change 
in po(J = 1, K = 1) measured in Paper I, the absolute values of &(30) and the 
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TABLE III 

Energy Splittings for CH,“‘SiH, and Isotopic Shifts Relative to CH3%iH3 

upper state Lower state Label Observed 

J KoP J' K' a' T' 
Splitting 

A,(301 - Ao(28) 

A0 (MHz) 

1 +l 0 
- 

El 2 0 0 Al 
vo,o 

2 235.789 (45) 

1 +1+1 E 3 1:l 0 E 1 'EA 635.102 (13) -534.7 (2.8)= 

2 +1+1 E 3 2+1 0 El %A 635.169 (13) -534.7 (2.8) 

+1+1 - - 1 E 
3 

l+l+l E2 
'EE 

436.724 ( 9) -359.2 (3.3)= 

a -These measurements were used in calculating the isotopic change in p. 

shifts [ &( 30) - A,,( 28)] were determined. The results are listed in Table III. The 
error in the absolute numbers is dominated by the calibration error, while that 
in the differences contains comparable contributions from the short-term stability 
of the voltage source, the uncertainty in the isotopic change in p, and the frequency 
errors. 

The value of Q, was also determined for the Y O,. rotational anticrossing in 
CHS3’SiH3 with AlmJ] = 0. Because of the relatively large isotopic change in B, 
the corresponding cZ~ in the parent species was lower by a factor -1.6, so that 
relative measurements were not possible. The result obtained for vo,o is given in 
Table III. 

4. The Rotational Transitions 

The frequencies for allowed pure rotational transitions obeying the normal se- 
lection rules AJ = +l, A(&) = 0 are given by (see Section II) 

;(l-cos3na)) - &i$2),~, 
VKU 

- ~.JC(P)~K~) - 2(J + l)K’DJK - 4(J + 1)3D,. (14) 

As usual, only the lower-order terms on the sum on n need be retained. The quantity 
in curly brackets in Eq. (14) is the effective B value BeB that is the basis of the 
torsional satellite method (3, 12, 8). The angular brackets ( )vKc represent di- 
agonal matrix elements in the torsional state Iv&). 

For CH328SiH3, Hirota (8) gives frequencies for such transitions for v 5 4 with 
(J, K) = (1, 0) - (0, 0) and with (2, kl) - (1, &l). With one exception, the 
frequencies with u ZG 2 are listed in Table II. The lines with u r 3 are discussed 
in Section VI. No errors are quoted because none are specified in the original work. 
It was assumed that the experimental uncertainties were 100 kHz. 

The exception mentioned above is the line with (1,O) - (0, 0) for the torsional 
ground state. From Eq. (14), this line consists of two components at frequencies 
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~(0, 0, 0, 0) and ~(0, 0, 0, kl ). This spectrum was remeasured with the MBER 
spectrometer in an attempt to resolve the doublet splitting of 24 kHz expected from 
a preliminary analysis. The instrumental linewidth was 13 kHz and a signal-to- 
noise ratio of 100 was attained for a single sweep with a time constant of 1 sec. 
A partial resolution of the splitting was achieved. However, because of small hy- 
perfine effects, there was considerable uncertainty in determining the two “hyper- 
fine-free” frequencies ~(0, 0, 0, 0) and ~(0, 0, 0, fl). To allow for these effects, 
each frequency was assigned an error of 10 kHz. The results are given in Table 
II. They agree well with Hirota’s value for the unresolved pair. 

An attempt was made also to observe this doublet for u = 1. With the standard 
source conditions used for the anticrossings, these lines could not be detected, 
indicating that the torsional temperature is lowered considerably in the nozzle. The 
source conditions were varied, but we were unable to observe the transitions. 

V. THE ABSOLUTE SIGNS OF THE ROTATIONAL g FACTORS 

In Paper I, the conventional MBER spectrum was used to determine the mag- 
nitudes of the two rotational g factors gL and gI as well as showing that the relative 
sign is positive. The absolute signs were established here by a method developed 
earlier (6) based on studying an anticrossing with (AmJ # 0) in a magnetic field. 
For this purpose, the EA barrier avoided crossing (J, K, u, I’, mJ) = ( 1, +l, + 1, 
E3, 0) ++ (1, ~1,0, E,, + 1) was observed in a magnetic field of 0.4 T. The spectrum 
was found to consist of two magnetic components, whose effective g factors were 

g&r = T[gn - N&L + gll)l. (1% 

The hydrogen shielding effects are negligible. It was found that lgeKl = 5.65686( 17) 
nm. From the known value for the hydrogen g factor gu (17), it follows that (g,, 
+ gt) = -0.1426(7) nm. Thus both g factors are negative. From the results in 
Paper I, it was found that lgL + gtl = 0.14306( 13) nm. The two magnitudes agree 
well; this comparison provides a strong test of the data. The significance of this 
sign determination is discussed in Paper I. 

VI. ANALYSIS AND DISCUSSION 

A least-squares analysis of the data for CH328SiH3 in Table II was carried out 
using the procedure outlined in Section II. There is clearly not enough information 
to determine all the constants in Eqs. (1) and (6). The first step in overcoming this 
problem was to fix D, and DJK at values from the mm-wave spectrum (10). 

Because of the many correlations, it was necessary to introduce three effective 
parameters. Four of the constants which enter only in K-independent terms are 
highly correlated: A, DK, DK,,,, and FjK. These are sensitive only to the beam data. 
Because A and DK cannot be separated, DK was fixed at the force-field value (18). 
Two linear combinations of the remaining three constants were determined, A”’ 
and D$: 

A’” = A - D&&i + F,&( l/2)( 1 - cos 3+, , (164 

D ;: = DK,,, + XF,, ; (16b) 
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TABLE IV 

Molecular Constants for Methyl Silane 

A eff (MHZ) 56 189.449 (32) 56 190.276 (52) 

B (MHz) 10 986.378 (22) 10 824.3# 

DJ (Hz) 10.71 a 10.71 = 

DJK (kHz) 45.59 a 45.59 c 

DK (kHz> 189.65 b 189.65 = 

P 0.351 8127 (49) 0.351 8197 (91) 

eff 
"3 (cm 

-1 
1 592.3359 (73) 592.4420 (84) 

FgJ (MHz) -138.27 (17) -138.27 ' 

FgJ (MHz) -2.653 (65) -2.653 ' 

D Jm (MHz) 0.7071 (41) 0.7071C 

eff DKm (MHz) 10.6 (2.0) 10.6 = 

dJ (MHZ) -0.157 (29) -0.157 c 

a - This is fixed at the value taken from Ref. (10). 
b - This is fixed at the force-field value. (gG- 
c - This is fixed at the corresponding value for CH328SiH3. 

(52)o is the unweighted average over u of the diagonal matrix elements of operator 
52 for 2) = 0 and any fixed K. The particular value of K selected to calculate this 
mean need not be specified because the average is independent of K for tr = 0 to 
an accuracy much higher than necessary here (10). The calculated value of the 
numerical constant X is 0.0115; it is a function only of the reduced barrier height 
s. The origin of these effective parameters will be discussed elsewhere (I 0). Because 
V, is related to A through S, the use of Aeff necessitated the introduction of 

Vc,’ = (9/4)sA’“/[p( 1 - p)]. (16~) 

The determinable parameters3 are listed in Table IV, along with the best fit 
values. Table II lists the differences between the observed frequencies and those 
calculated from these constants. The agreement is excellent. The value of 02; is 
determined to only 20%, but it is required to remove systematic deviations of about 
150 kHz for the rotational anticrossing data. The constants in Eqs. (5) and (6) but 
omitted from Table IV were fixed at zero; they either did not improve the fit or 
were undeterminable. 

3 F is not treated as an independent parameter, but is set equal to ,-&/p( 1 - p). Strictly speaking, 
this step and other small effects discussed in Ref. (10) require the addition of a term Sp* to &“ra, where 
(is an empirical torsion distortion constant. However, (could not be determined in the fit and was fixed 
at zero. 
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TABLE V 

Values Obtained for True Parameters under Different Assumptions 

Assume Assume 

F3K 
3 0 

%I 
3 0 

A (MHz) 56 251. 56 106. 

"3 (cm -1 1 593.12 591.27 

DKm (MHZ) 10.7 0 

F3K (MHz) 0 944. 

The constant F,, was included in this best model, while we omitted FbJ, which 
was initially expected to be much larger. The constant F,, was chosen because it 
reduced the x2 to 8.7 while Far gave a x2 of 14.7. The reduction is significant in 
an F test at the 85% level, but, perhaps more important, the change in the x2 arose 
almost entirely from the two relative measurements in the beam data. The fit with 
F9, could reproduce the J dependence in both the microwave and beam data, 
whereas the fit with F6J could reproduce only the microwave portion. If FsJ is used 
rather than F,, the main changes are small decreases in the magnitude of four 
parameters: 309 kHz in B and A, 52 kHz in D/,, and 3.3 MHz in F,,. If both F6, 
and F9, are included in the fit, the two are equal to within their errors of -50% 
and the x2 improves only marginally. 

In an attempt to determine the true values of A and V, from the effective ones, 
two additional fits were made, one with FjK = 0 and the other with DKm = 0. The 
results are given in Table V. Although the magnitudes obtained for DK,,, and F3K 
appear large at first glance compared to those for DJ,,, and F,, respectively, it must 
be remembered that DKIDJ = 18. There appear to be no grounds for eliminating 
either DK,,, or FjK. The actual values for A and V, will most likely lie between the 
limiting numbers from Table V. As our final results, we take A = 56179 (75) MHz 
and V, = 592.2 (1.0) cm-‘. These correlation effects have now been removed from 
this value of V, so that it is the “true” value in the context of a model where V,, 
= 0 for n > 1. However, this value still contains the usual contributions (2) from 
these higher-order terms in the expansion of the potential. 

In the analysis, Hirota’s data with u = 3 and 4 were deliberately omitted. The 
model cannot be made to fit these frequencies. The difficulty does not seem to be 
in the measurements or the identification, but appears to be in the model itself. 

A detailed comparison between the constants obtained here and those determined 
in earlier works on methyl silane (3, 8, 9) is of very limited value and so is not 
presented here. With only the microwave data available, the earlier authors could 
not establish the difficulty with the lines with t.~ > 2 and so included them in their 
analyses. Furthermore, F and p had to be calculated from the structure. Within 
these limitations, the earlier results are in reasonable agreement with the present 
values. 
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However, it is of interest to compare the current determination of Z, with the 
values obtained for asymmetric rotors using microwave spectroscopy. From Eq. 
(3), Z, for CH328SiH3 = 3.165 (5) amu-A’. A typical selection of results for asym- 
metric tops is given in Table V of Ref. (19). The present measurement falls in the 
middle of the range given and the accuracies are comparable. 

The data for the isotopic species CH330SiH3 in Table III were analyzed in a 
manner similar to that used for CH328SiH3. The rotational constant Z3 was set equal 
to the mm-wave value (10) and all the distortion constants were held fixed at the 
corresponding values for the parent isotopic species. Then the three remaining 
constants Aeff, Veff, and p were varied. The results of the least-squares fit are given 
in Table IV. 

The isotopic changes in A and V, can be taken directly from the differences in 
the effective values (see Eq. 16) because the distortion constants DK,,, and FjK can 
be assumed to cancel. The fractional change in A is 

[A(CH330SiH3)/A(CH328SiH3) - l] = 15(2) ppm. (17) 

As expected for the on-axis substitution of a heavy atom, this shift is very small. 
It is probably due to changes in the zero point motion. The change in V, is 

[ vj(CH330SiH3) - V3(CHj2’SiHJ] = 0.106( 11) cm-‘. (18) 

The magnitude of the fractional change is - 180 ppm. Since this is the first mea- 
surement of its kind in a symmetric rotor, the order of magnitude is difficult to 
interpret. 

The isotopic change in p can best be determined by using the relative (J = 1) 
measurements made for [r&30) - r&28)] and [ vEA( 30) - 428)] as given in 
Table III. This gives a fractional change of 

[p(CH330SiH3)/p(CH328SiH3) - l] = 20(20) ppm. (19) 

Equations (17) and ( 19) can be used to show that 

[Z,(CH330SiH3)/Z,(CH328SiH3) - l] = 5(20) ppm. (20) 

As expected, the moment of inertia of the top is very insensitive to the on-axis 
isotopic substitution in the frame. 

The isotopic changes given in Eqs. ( 17) to ( 19) are insensitive to the particular 
choice of higher order parameters used in the fits generating Table IV. Furthermore, 
the effects due to A, V3, and p are so much larger than those due to the distortion 
constants that we can neglect the errors introduced by assuming these constants 
are unchanged by the isotopic substitution. 

In a later paper (ZU), extensive new microwave data will be presented along with 
an evaluation of the model for the torsion-rotation Hamiltonian. A more complete 
discussion will be given of several points touched on here, including the deviations 
in the microwave lines for u r 3, the information obtained on the higher-order 
terms in the potential, and the interpretation of the various constants. 
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