AVOIDED-CROSSING MOLECULAR-BEAM SPECTROSCOPY OF $\mathrm{CH}_{3} \mathrm{SiF}_{3}$

W. Leo MEERTS
Fysisch Laboratorium, Katholieke Universiteit, Toernooiveld, 6525 ED Nijmegen, The Netherlands
and
Irving OZIER
Department af Physics, University of British Columbia, 6224 Agriculture Road, Vancouver, V6T $2 A 6$ Canada

Received 18 March 1982

Abstract

The avoided-crossing molecular-beam method has been applied to $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ in the ground torsional state. Stark and hyperfine rotational anticrossings have been studied, along with barrier anticrossings in which the zero-field energy differences depend only on the forsional splittings. For $v=0$, pure rotational spectra were measured for $J=13 \leftarrow 12$ and $14 \leftarrow 13$ with a mm-wave spectrometer and for $J=1 \leftarrow 0$ with the molecular-beam spectrometer. Stark and Zeeman studies have been carried out with conventional beam techniques. From a simultaneous analysis of existing microwave data for $v \geqslant 2$ and the current measurements, it was found that the moment of inertia of the methyl top $I_{\alpha}=3.170$ (2) amu \AA^{2}, the effective rotational constant $A^{\text {eff }}=4059.522(22) \mathrm{MHz}$, and the effective height of the barrier $V \frac{\alpha}{3}=413.979(14) \mathrm{cm}^{-1}$. The true values of A and V_{3} have been obtained within certain approximations. The rotational constant B and several distortion constants including D_{K} were evaluated. In addition to determining the electric dipole moment μ to be 2.33938 (14) D , the data yielded values for the distortion dipole constants μ_{D} and μ_{j}, and the molecular g-factors $g_{\| \mid}$and g_{1} -

1. Introduction

A significant advance in the study of internal rotation of symmetric rotors has been made recently with the development of the avoided-crossing molecularbeam method [1,2]. In favourable cases, this technique allows the determination of energy separations Δ_{0} between levels that are not connected by a matrix element of the permanent dipole moment. The ($\Delta K=0$) selection rule can be overcome in this way, so that the leading terms in the torsion-rotation hamiltonian can now be measured directly.

The avoided crossings can be classified according to the mechanism which provides the mixing between the interacting levels [2-4]. In the "Stark anticrossings", this mixing arises from the centrifugal distortion dipole moment $\mu_{D}[5,6]$. The selection rules are $\Delta K= \pm 3$ and $\Delta \sigma=0[2]$, where $\sigma=-1,0,+1$ labels the torsional sublevels. In the "hyperfine anticrossings", the mixing is produced by the nuclear hyperfine effects. Here the selection rules are $\Delta K=0, \pm 1, \pm 2$, depending on the specific hyperfine operator involved, and $\Delta \sigma=$ $0, \pm 1$ [2].

The avoided crossings can also be classified according to the physical origin of the zero-field energy separation Δ_{0}. If this contains a contribution from the energy of rigid rotation, the anticrossing is referred to as "rotational". If Δ_{0} arises entirely from torsional terms, we have a "barrier" anticrossing. In both cases, to lowest order, the crossing field ϵ_{c} at which the two interasting levels have their minimum separations ν_{m} is proportional to the ratio of Δ_{0} to the electric dipole moment μ.

In the initial experiment [2], a series of $(\Delta J=0)$ rotational anticrossings were studied in $\mathrm{CH}_{3} \mathrm{CF}_{3}$. Of the Stark cases measured, all involved $K= \pm 2 \leftrightarrow \mp 1$, because this type has the lowest ϵ_{c} [3]. In the most recent work [4], a series of barrier anticrossings were studied in $\mathrm{CH}_{3} \mathrm{SiH}_{3}$, along with a set of rotational avoided crossings ${ }^{\ddagger}$ between upper level ($J_{\alpha}=1, K_{\alpha}$ $= \pm 1, \sigma_{\alpha}$) and lower level ($J_{\beta}=2, K_{\beta}=0, \sigma_{\beta}$). No
$\stackrel{\sim}{*}$ As in the convention defined in ref. [3], the levels are labelled by the quantum numbers appropriate to the electric field range $0 \& \epsilon \varangle \epsilon_{\mathrm{c}}$. For this field range, the upper and lower levels are denoted α and β, respectively.
($\Delta J=0$) rotational anticrossings were observed because the ϵ_{c} involved were too high.

A test of the current mocel for internal rotation in symmetric rotors was completed recentiy [7] using $\mathrm{CH}_{3} \mathrm{SiH}_{3}$ by analysing both the avoided-crossing data [4] and microwave measurements; the latter inchided older spectra [8] and exiensive new results [7]. Because of cooling in the nozzle beam source, the anticrossing experiments were confined to the ground torsional level $(v=0)$; this is true of all the work to date including that reported he:e. The microwave experiments are based on the torsional satellite method introduced by Kivelson [9]; these measurements are made primarily in the excited torsional levels, but are much less sensitive to the leading terms in the hamiltonian. It was concluded that the model [7,10-12] works well for levels well below the top of the barrier, but breaks down for levels near the barrier top or above it [1].

In the current work, the avoided-crossing method has been applied to methyltifluorosilane $\left(\mathrm{CH}_{3} \mathrm{SiF}_{3}\right)$. With its intemal rotor splittings in the 10 to 300 MHz range, its small difference $(A-B)$ in rotational constants, and its large electric dipole moment μ, this molecule is very well suited to the study of both barrier and ($\Delta J=0$) rotational anticrossings. A large number of both types have been observed, including Stark rotational anticrossings with $K= \pm 3 \multimap 0$. These had been predicted [3], but not previously detected. With absolute measurements of 21 different Δ_{0} and 6 relative measurements, the internal consistency of the rotational and barrier experiments has been established to a high degree of accuracy.

A simultaneous analysis was carried out of both these bearn data and the microwave spectra. The latter consisted of the existing cm-wave data [13] for $v \leqslant 3$ supplemented with current results from two groundstate studies: mm-wave measurements for $J=13 \leftarrow 12$ and $J=14-13$, and molecular-beam electric-resonance (MBER) measurements for $J=1 \leftarrow 0$. The analysis confirms the conclusion reached for methylsilane [7]. The established model for internal rotation [?,10-12] reproduced the frequencies for levels below the barrier top ($v \leqslant 2$), but the resulting least-squares parameters, as given in table 1, predict microwave frequencies for the levels near the barrier top $(v=3)$ that clearly disagree with experiment. It is not known whether the meshanism for the breakdown is a direct result of the

Table 1
Molecular constants for $\mathrm{CH}_{3} \mathrm{SiF}_{3}{ }^{\text {a) }}$

Quantity	
μ / μ (OCS $)^{\text {b) }}$	3.270994 (35)
μ (D) ${ }^{\text {b }}$)	2.33938 (14) $\mathrm{c}, \mathrm{d})$
$\mu_{j}(\mu \mathrm{D})$	1.23 (26)
$\left.{ }_{M}{ }^{(\mu \mathrm{D}}\right)$	2.13 (57)
$g_{\square}(\mathrm{nm})$	-0.0252(4)
$g_{1}(\mathrm{~nm})$	-0.0178(2)
$A^{\text {eff }}$ (MHz)	4059.521 (21)
$B(\mathrm{MHz})$	$3718.042(21)$ d)
$D_{J}(\mathrm{kHz})$	$0.8566(68)$
$D_{J K}(\mathrm{kHz})$	2.521 (11)
$D_{\mathrm{K}}(\mathrm{kHz})$	-4.32(33)
ρ	0.02546055 (48)
$V_{3}^{\text {ett }}\left(\mathrm{cm}^{-1}\right)$	413.994 (9) d)
$F_{3 J}(\mathrm{MHz})$	-18.91 (12) d)
$F_{9 J}(\mathrm{MHz})$	-0.524 (58)
$D_{\text {Jm }}(\mathrm{MHz})$	$0.0906(27){ }^{\text {d }}$)
$D_{\text {Km }}^{\text {eff }}$ (MIIz)	$0.208(40)$

${ }^{\text {a) }}$ In evaluating the constants that enter $H_{T R}$, only the data with $v \leqslant 2$ were used.
b) Here μ represents $\mu_{Q}(3,2)$.
c) This was calculated using $\mu(\mathrm{OCS})=0.71519$ (3) D [22].
d) Comparisons with previous values are given in the text.
levels' position with respect to the barrier top or is a result of an unrelated process, such as perturbation by a low-lying vibrational fundamental. However, with a second molecule now behaving in the same manner as $\mathrm{CH}_{3} \mathrm{SiH}_{3}$, it is becoming clear that the mechanism at work is intrinsic to the torsion-rotation-vibration hamiltonian.

In addition to this torsion-rotation investigation, a Stark-Zeeman study was carried out. The precision value of μ obtained was essential to the analysis of the anticrossing data. All the dipole constants and g-factors determined are listed in table 1.

2. Theory

The torsion-rotation hamiltonian $H_{T R}$ for a sym-
metric rotor has received a great deal of attention over the years [$10-12,14,15$]. Most recently, H_{TR} has been discussed in the light of the development of the avoidedcrossing method [4,7]. Here we shall only review very briefly the most important results following the notation of the earlier studies of $\mathrm{CH}_{3} \mathrm{SiH}_{3}[4,7,16]$.

In the internal-axis method (IAM),

$$
\begin{align*}
& H_{\mathrm{TR}}=B J^{2}+(A-B) J_{z}^{2} \div F p^{2} \\
& \quad+V_{3}\left[\frac{1}{2}(1-\cos 3 \alpha)\right]+H_{\mathrm{D}} . \tag{1}
\end{align*}
$$

The first two terms result from rigid rotation, while the third and fourth arise from oscillations in the torsional angle $\alpha . H_{\mathrm{D}}$ takes into account distortion effects associated with these two types of motion. In the limit that such effects are negligible, $F=A / \rho(1-\rho)$, where $p=I_{\alpha} /\left(I_{\alpha}+I_{\mathrm{f}}\right)$. Here I_{α} and I_{f} are, respectively, the moments of inertia about the symmetry axis of the CH_{3}-top and the SiF_{3}-frame. In the current work, only the first term in the Fourier expansion of the hindering potential $V(\alpha)$ is retained because this leading term cannot be separated from the higherorder corrections [7]. If these corrections are negligible, then V_{3} is the height of the potential barrier.

The distortion hamiltonian H_{D} can be expanded in terms of the square of the total angular momentum J, the component J_{z} of J along the symmetry axis z, the torsional angular momentum p, and the torsional operators $\frac{1}{2}(1-\cos 3 n \alpha)$, where n is an integer. If only the terms that enter directly into the analysis of the current data are retained, then

$$
\begin{align*}
H_{\mathrm{D}} & =-D_{J} J^{4}-D_{J K} J^{2} J_{Z}^{2}-D_{K} J_{Z}^{4} \\
& -\left(D_{J m} J^{2}+D_{K m} J_{Z}^{2}\right) p^{2} \\
& +\frac{1}{2}(1-\cos 3 \alpha)\left(F_{3 J} J^{2}+F_{3 K} J_{Z}^{2}\right) \\
& +\frac{1}{2}(1-\cos 9 \alpha) F_{9 J} J^{2} . \tag{2}
\end{align*}
$$

The reason for including F_{9} in preference to F_{6} is discussed in section 8. Because various terms in H_{D} have been dropped, some of the constants in eqs. (1) and (2) must be interpreted as effective parameters [7]. For example, both F and ρ will deviate by small amounts from the definitions given above. A full discussion of H_{D} and the difficulties in separating the various parameters is given elsewhere [7].

The quantum numbers labelling the eigenvalues E_{TR} of H_{TR} are $\left(w K o m_{J}\right)$. The symmetry type of the torsional wavefunctions is A for $\sigma=0$ and E for $\sigma= \pm 1$. The symmetry type Γ of the torsion-rotation wavefunctions is determined by the irreducible representation of group G_{18} corresponding to ($(\mathrm{KK}$) [17]. m_{J} is the magnetic quantum number for the component of J along the space-fixed Z-direction, which is, of course, taken to be the direction of the external fields. When nuclear hyperfine effects are taken into account, several additional quantum numbers must be introduced. m_{H} and m_{F} are, respectively, the magnetic quantum numbers for the total hydrogen nuclear spin I_{H} and the total fluorine nuclear $\operatorname{spin} I_{\mathrm{F}}$. The eigenvalue of the Z-component of the total angular momentum is $m_{\mathrm{T}}=m_{J}+m_{\mathrm{H}}+m_{\mathrm{F}}$.

In order to analyse the torsion-rotation data, $E_{\text {TR }}$ was calculated as described in refs. [4,7] treating H_{D} with first-order perturbation theory. In order to determine the dipole moment μ in the Stark study and the zero-field splittings Δ_{0} in the anticrossing experiments, the Stark-rotation hamiltonian was diagonalized [4,16] after truncation at $\Delta I=3$. In this calculation, the rotational hamiltonian is treated as though $V_{3} \rightarrow \infty$, but with B replaced by the ($v=0$) value of \tilde{B} as defined by eq. (6) below. For $\mathrm{CH}_{3} \mathrm{SiF}_{3}$, this value of \tilde{B} is 3715.658 MHz . The values of D_{J} and $D_{J K}$ used are given in table 1. The fundamental constants were taken from Cohen and Taylor [18].

3. Experimental details

The experimental methods and conditions were very similar to those used for earlier studies of symmetric rotors $[3,19,20]$. The basic MBER apparatus has been described in detail elsewhere [21]. The very low rotational temperatures required were obtained using the seeded beam technique; a mixture of 4% $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ in argon was expanded through a $40 \mu \mathrm{~m}$ nozzle at a backing pressure of 1.0 bar with the source at room temperature. The two strongest ion fragments SiF_{3}^{+}and $\mathrm{CH}_{3} \mathrm{SiF}_{2}^{+}$were detected simultaneously by adjusting the resolution of the mass spectrometer.

Three different C -field configurations were used. For the Stark-Zeeman studies, the large quartz Cfield was employed [3] with a 120 mm long section coated for $\left(\Delta m_{T}=0, \pm 1\right)$ transitions. For the anti-
crossings at relatively low field ($\epsilon_{\mathrm{c}} \leqslant 2 \mathrm{kV} / \mathrm{cm}$), this same quartz field was used but with a 62 mm long section coated only for ($\Delta m_{\mathrm{T}}=0$) transitions [3]. For the high-tield anticrossingr, the small pyrex Cfield was used with a 13 mm long section coated only for ($\Delta m_{\mathrm{T}}=0$) transitions [20]. A detailed discussion of the stability and calibration of the electric field has been given earlier [3,20].

4. The electric dipole moment

A precision measurement of the dipole moment was obtained by studying the usual MBER spectra $\left(J, \pm|K|, \mp\left|m_{J}\right|\right) \rightarrow\left(J, \pm|K|, \mp\left|m_{J}\right|+1\right)$. For the Cfield used (see section 3), the full width $\Delta \nu_{\mathrm{T}}$ at half height due to time of flight was $\approx 4 \mathrm{kHz}$. Preliminary observations were made of several spectra; each appeared as a structureless feature whose width was dominated by hyperfine and/or inhomogeneity effects. The final measurements of μ were made from the (m_{J} $=\mp 1 \rightarrow 0)$ and $(\mp 2 \rightarrow \mp 1)$ components for $J_{K}=3_{ \pm 2}$. At an electric field of $\approx i 226 \mathrm{~V} / \mathrm{cm}$, these fell at 240.0 and 238.6 MHz , respectively. For each component, the observed full width $\Delta \nu_{\text {obs }}$ at half height was ≈ 11 kHz and the signal-to-noise ratio was ≈ 2 for a time constant of 1 s . A signal-averager was used to obtain a signal-to-noise of at least $5 / 1$. This specific J_{K} was chosen because, for this case, the frequencies measured for the components are independent [19] of the nuclear hyperfine effects and of the effective anisotropy ($\alpha_{1}-\alpha_{1}$) eff in the polarizability. The latter takes into account [16] both the true anisotropy ($\alpha_{1}-\alpha_{1}$) and the J-dependence of the dipole moment that enters the second-order Stark effect.

The values of μ obtained for the two components agreed to 3 ppm , a difference consistent with the frequency error of $\approx 1 \mathrm{kHz}$. The ratio of the average to the dipole moment of OCS in the $(J=1)$ level of the ground vibrational state is givert in table 1 , along with the absolute value of μ calculated using $\mu(\mathrm{OCS})=$ $0.71519(3)$ [22]. This final value for $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ agrees with the previous microwave determination [13] that $\mu=2.33(10) \mathrm{D}$.

No attempt was made to study the rotational dependence of μ from these spectra. The effective dipole moment determined from such Stark measurements with $K \neq 0$ is given by $[16,23]$:
$\mu_{Q}(J, K)=\mu_{0}+\mu_{J} J(J+1)+\mu_{K} K^{2}$.
In the infinite barrier limit, μ_{0} is the rotationless dipole moment in the $(v=0)$ level. For the current work, the only effect of internal rotation on eq. (3) is to change slightly the interpretation of the constant μ_{0}. See the appendix of ref. [16]. In eq. (3), μ_{J} and μ_{K} are distortion dipole constants. The number given for μ in table 1 actually represents $\mu_{Q}(3,2)$. From the value of μ_{J} in table 1 , it is clear that the contribution of μ_{J} to $\mu_{Q}(3,2)$ is insignificant compared to the 140 ppm error in the absolute value of μ. The same conclusion is reached for μ_{K} if $\left|\mu_{K} / \mu_{J}\right| \leqslant 30$, which is a very generous upper limit. Even with relative measurements, it would be very difficult to obtain μ_{J} and/or μ_{K} from the conventional spectrum. However, relative measurements on the anticrossing spectra have been used find μ_{f}. See section 5.1.

5. The avoided crossing measurements

5.1. The Stark rotational anticrossings

Two series of Stark anticrossings with $(\Delta I=0)$ have been studied in $\mathrm{CH}_{3} \mathrm{SiF}_{3}$: one ${ }^{\ddagger}$ with $K= \pm 2 \leftrightarrow \mp 1$ for various σ and J, and the other with $K= \pm 3 \leftrightarrow 0$ for various σ but only $J=3$. As shown in ref. [3], these two K-series are the only ones which meet the focusing requirements for transition detection in a conventional MBER spectrometer.

The various anticrossings searched for are listed in table 2. For each case which was not observed, the mixing matrix element η must be much smaller in magnitude than the typical values for the anticrossings detected. Our tentative conclusion is that the unobservable anticrossings are forbidden, i.e. the corresponding $\eta \equiv 0$. One selection rule which emerges clearly is $\Delta \sigma=0$. Since the distortion dipole operator has no torsional part and does not break the rotational symmetry, one would expect the torsion-rotation symmetry to be conserved, i.e. $\Delta \Gamma=0$. This implies directly $\Delta \sigma=0$. A similar conclusion was reached earlier for $\mathrm{CH}_{3} \mathrm{CF}_{3}$ [2].

[^0]Table 2
Summary of the selection rules investigated for anticrossings in $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ a)

J	Upper state				Lower state				Δm_{J}	Label b)	Remarks ${ }^{\text {c }}$)
	K_{α}	σ_{α}	Γ_{α}	m_{J}^{α}	K_{β}	σ_{β}	Γ_{β}	$\overline{m_{J}^{\beta}}$			
2	* 2	0	E_{1}	± 1	F 1	0	E_{1}	± 1	0	SH	
2	± 2	F1	E_{2}	± 1	F 1	¢ 1	E_{2}	± 1	0	SH	
2	± 2	± 1	E_{3}	± 1	= 1	± 1	E_{3}	± 1	0	SH	
2,3	± 2	0	E_{1}	± 2	F 1	0	E_{1}	± 2	0	S	
2,3	± 2	F1	E_{2}	± 2	∓ 1	¢ 1	E_{2}	± 2	0	s	
2,3	± 2	± 1	E_{3}	± 2	∓ 1	± 1	E_{3}	± 2	0	S	
2	± 2	F 1	E_{2}	± 2	F 1	0	E_{1}	± 2	0	s	not observed
2	± 2	± 1	E_{3}	± 2	F 1	0	E_{1}	± 2	0	S	not observed $\#$
2	± 2	0	E_{1}	± 2	F1	∓ 1	E_{2}	± 2	0	s	not observed
2	± 2	$=1$	E_{2}	± 1	F 1	F 1	E_{3}	± 1	0	SH	not observed
2	± 2	± 1	E_{3}	± 1	F1	F1	E_{2}	± 1	0	SH	not observed
4	± 2	0	E_{1}	14	F 1	0	E_{1}	± 4	0	s	
5	± 2	± 1	E_{3}	± 1	F 1	± 1	E_{3}	± 1	0	SH	
5	± 2	0	E_{1}	± 5	F 1	0	E_{1}	± 5	0	s	
3	± 3	0	A_{2}	± 1	0	0	A_{2}	± 1	0	s	
3	± 3	∓ 1	E_{4}	± 1	0	$\ddagger 1$	E_{4}	± 1	0	S	
3	± 3	± 1	E_{4}	± 1	0	± 1	E_{4}	± 1	0	S	
2	± 2	0	E_{1}	± 2	0	0	A_{1}	0	± 2	H	
2	± 2	F 1	E_{2}	± 2	0	± 1	E_{4}	0	± 2	H	
2	± 2	F 1	E_{2}	± 2	0	0	A_{1}	0	± 2	H	$\Delta m_{\mathrm{H}}=\mp 2 ; \Delta m_{\mathrm{F}}=0$
2	± 2	0	E_{1}	± 2	0	± 1	E_{4}	0	± 2	H	
2	± 2	± 1	E_{3}	± 2	0	± 1	E_{4}	0	± 2	H	not observed
2	± 2	± 1	E_{3}	± 2	0	0	A_{1}	0	± 2	H	not observed
2	± 2	0	E_{1}	± 2	0	0	A_{1}	± 1	± 1	H	
2	± 2	F 1	E_{2}	± 2	0	± 1	E_{4}	± 1	± 1	H	
2	± 2	f1	E_{2}	± 2	0.	0	A_{1}	± 1	$\pm i$	H	
2	± 2	0	E_{1}	± 2	0	± 1	E_{4}	± 1	± 1	H	
1,2,3	± 1	$=1$	E_{3}	± 1	F 1	0	E_{1}	± 1	0	EA	
1,2,3	± 1	± 1	E_{2}	± 1	F 1	0	E_{1}	± 1	0	EA	not observed
2	± 1	¢ 1	E_{3}	± 2	F1	0	E_{1}	± 2	0	EA	
2	± 1	F 1	E_{3}	± 2	F 1	0	E_{1}	± 1	± 1	EA	$\Delta m_{H}=\mp 1 ; \Delta m_{F}=0$

Table 2 (continued)

J	Upper state				Lower state				Δm_{J}	Label b)	Remarks ${ }^{\text {c }}$
	K_{α}	σ_{α}	Γ_{α}	$m_{J}^{\text {a }}$	K_{β}	σ_{β}	$\overrightarrow{\boldsymbol{r}}_{\beta}$	m_{J}^{β}			
2	± 1	∓ 1	E_{3}	± 2	∓ 1	0	E_{1}	0	± 2	EA	not observed
2	± 1	± 1	E_{2}	± 2	¢ 1	0	E_{1}	± 2	0	EA	not observed
2	± 1	± 1	E_{2}	± 2	∓ 1	0	E_{1}	0	± 2	EA	not observed
2	± 2	∓ 1	E_{2}	± 1	± 2	0	E_{1}	∓ 1	± 2	EA	not observed
2	± 2	± 1	E_{3}	± 1	± 2	0	E_{1}	F 1	± 2	EA	not observed
3	± 1	∓ 1	E_{3}	± 2	¢ 1	0	E_{1}	± 2	0	EA	not observed
5	± 1	∓ 1	E_{3}	± 5	∓ 1	0	E_{1}	± 5	0	EA	
2	± 1	∓ 1	E_{3}	± 1	=1	± 1	E_{2}	± 1	0	EE	
3	± 1	F 1	E_{3}	± 1	∓ 1	F 1	E_{2}	± 1	0	EE	
4	± 1	∓ 1	E_{3}	± 1	∓ 1	∓ 1	E_{2}	± 1	0	EE	
4	± 1	$=1$	E_{3}	± 2	∓ 1	∓ 1	E_{2}	± 1	± 1	EE	

a) Upper signs go with upper and lower with lower.
b) For the Stark-hyperfine hybrids (SH), the selection rules listed refer only to the pure Stark component. See text.
c) Unless otherwise specified, the anticrossing was observed.

The selection rules for the magnetic quantum numbers follow [3] from the fact that the distortion dipole operator has no nuclear spin part. Clearly, $\Delta m_{\mathrm{H}}=$ $\Delta m_{\mathrm{F}}=0$. Since m_{T} must be conserved, Δm_{J} must also vanish. This argument does not apply to the hyperfine crossings; in this case, $\Delta m_{J}=0, \pm 1, \pm 2$, depending on the specific operator involved.

Most anticrossings can be treated as a series of twolevel problems; in the upper- and lower-state quantum numbers of table 2 , as throughout the current work, upper signs go with upper and lower with lower (unless otherwise specified). However, the Stark-hyperfine hybrids listed in table 2 are exceptions. These are all of the type $\left(J, K= \pm 2, \sigma, m_{J}= \pm 1\right) \leftrightarrow\left(J, K=\mp 1, \sigma, m_{J}\right.$ $= \pm 1$). The distortion dipole operator couples signs upper \leftrightarrow upper and lower \rightarrow lower twith its ($\Delta K= \pm 3$, $\Delta m_{j}=0$) matrix elements, while the magnetic dipoledipole interaction can couple signs upper \rightarrow lower and lower \leftrightarrow upper with its ($\Delta K= \pm 1, \Delta m_{J}= \pm 2$) matrix elements. By applying a small magnetic field B of ≈ 2 mT , these hybrid anticrossings are reduced to two separate "two-level" problems: a pure Stark anticrossing that is insensitive to B and a pure hyperfine anticrossing that can have many magnetic components (see section
5.2), each shifted well away from the ($B=0$) position. While the initial search for these avoided crossings was made in the Earth's field, all the precision crossing field measurements were made with $B \approx 2 \mathrm{mT}$ on the Stark component only. A full discussion of Stark-hyperfine hybrids is given in ref. [3].

The energy level scheme for the ($I=2$) member of the ($K= \pm 2 \leftrightarrow \mp 1$) series with $m_{J}= \pm 2$ is shown in fig. 1. The heavy dots mark the three possible ($\Delta \sigma=0$) anticrossings, all of which were observed. The urmarked intersections correspond to the ($\Delta \sigma= \pm 1$) anticrossings. The two at lowest field and the two at highest field were searched for and could not be detected. For the remaining two, the search was done on the corresponding series with $m_{J}= \pm 1$; again they could not be detected. Thus all six of the unmarked intersections in fig. 1 are thought to correspond to forbidden avoided crossings.

The energy level scheme for ($J=3, K= \pm 3 \leftrightarrow 0$) is very similar to that shown in fig. 2 . Of course, the energy levels have to be relabelled; in order of decreas. ing zero-field energy, these are $(J, K, \sigma, \Gamma)=(3, \pm 3$, $\left.\mp 1, \mathrm{E}_{4}\right) \equiv \alpha_{1} ;\left(3, \pm 3, \pm 1, \mathrm{E}_{4}\right) \equiv \alpha_{2} ;\left(3, \pm 3,0, \mathrm{~A}_{1}\right.$ $\left.+\mathrm{A}_{2}\right) \equiv \alpha_{3} ;\left(3,0, \pm 1, \mathrm{E}_{4}\right) \equiv \beta_{1} ;\left(3,0,0, \mathrm{~A}_{2}\right) \equiv \beta_{2}$.

Fig. 1. Schematic plot against the electric field of the energy levels of the $(J, K)=(2, \pm 2)$ and $(2, \mp 1)$ states for $m_{J}= \pm 2$. Upper signs go with upper and lower with lower. The heavy and open dots indicate the Stark and barrier anticrossings, respectively. For clarity, the torsional splittings have been enlarged slightly.

In this case, the ($\Delta \sigma= \pm 1$) anticrossings were not searched for. However, as specified in table 2 , the ($\Delta \sigma$ $=0$) anticrossings were observed: $\alpha_{1} \leftrightarrow \beta_{1} ; \alpha_{2} \leftrightarrow \beta_{1}$; $\alpha_{3} \leftrightarrow \beta_{2}$. In the last case, if we adopt the more restrictive $(\Delta \Gamma=0)$ form of the selection rule, only the A_{2} subievels in α_{3} can interact with β_{2}, as is indicated in table 2.

The typical anticrossing spectrum consisted of a single line at a frequency $\approx 1 \mathrm{MHz}$ with the electric field slightly above or below ϵ_{c}. The values of ϵ_{c} were $\approx 8.5 \mathrm{kV} / \mathrm{cm}$ for the ($K= \pm 3 \leftrightarrow 0$) series and the member of the ($K= \pm 2 \leftrightarrow \mp 1$) series with $J=5$ and $m_{J}= \pm 1$. The values of ϵ_{c} for the other members of the ($K= \pm 2 \leftrightarrow \mp 1$) series were $\approx 1.5 \mathrm{kV} / \mathrm{cm}$. As indicated in section 4 , different C-fields were used in the two cases. The values of $\Delta \nu_{\mathrm{T}}$ were $\approx 33 \mathrm{kHz}$ and ≈ 14 kHz for the higher and lower field cases, respectively. In each case, $\Delta v_{\text {obs }}$ was broadened by field inhomogeneities of $\approx 14 \mathrm{ppm}$. The signal-to-noise for a single swecp at a time constant of 1 s ranged from 0.5 to 6 .

Fig. 2. Schematic plot against the electric field of the energy levels of the $(J, K)=(2, \pm 2)$ and $(2,0)$ states. For clarity, the quadratic Stark effect of the ($K=0$) state has been exaggerated and the torsional splittings have been enlarged slightly. The dots indicate the observed hyperfine rotational anticrossings.

For most runs, the spectra were taken with a signalaverager; sufficient scans were taken to build the signal-to-noise up to at least $5 / 1$.

The determination of the zero-field splittings Δ_{0} from the crossing field ϵ_{c} follows from a simple extension of the analysis developed earlier for $\mathrm{C}_{3 \mathrm{v}}$ molecules [3]. For a Stark anticrossing, the value of Δ_{0} is independent of magnetic and hyperfine effects. The dipole moment μ is assumed to be constant at the reference value μ_{r}, which here is taken to be $\mu_{Q}(3,2)$ as determined in section 4. The rotational dependence of μ as given in eq. (3) is absorbed into Δ_{0} to form an apparent zero-field splitting Δ_{0}^{A}. The expression for Δ_{0}^{A} corresponding to eq. (18) in ref. [3] is here given by:
$\Delta_{0}^{\mathrm{A}}=\left(K_{\alpha}^{2}-K_{\beta}^{2}\right)[a-J(J+1) b]$,
where

$$
\begin{aligned}
a= & {\left[(A-B)+\left(-a_{1} F\right)\left(2 \pi^{2} p^{2} / 9\right)\right](1+\varepsilon) } \\
& -\left(K_{\alpha}^{2}-K_{\beta}^{2}\right) D_{K}
\end{aligned}
$$

$$
\begin{equation*}
\dot{b}=D_{J K}+(A-B) \mu_{J} / \mu_{0}-\left(-a_{1}^{J} F\right)\left(2 \pi^{2} \rho^{2} / 9\right) \tag{4c}
\end{equation*}
$$

$\&=J_{\mathrm{I}}\left(J_{\mathrm{I}}+1\right) \mu_{J} / \mu_{0}+\left[K_{I}^{2}-\left(K_{\alpha}^{2}-K_{\beta}^{2}\right)\right] \mu_{K} / \mu_{0}$. .
K_{α} and K_{β} are the K-values for the upper and lower states, respectively. c_{1} is the lowest-order coefficient in the Fourier expansion of the pure torsional energy $[10] .\left(a_{1}\right.$ is negative.) a_{1}^{J} is the effective J-dependence in c_{1} produced by H_{D}. As can be seen from eq. (2), a_{1}^{J} can be expressed in terms of $D_{J m}, F_{3 J}$, and $F_{9 J}$. FO: $\mathrm{CH}_{3} \mathrm{SiF}_{3},-a_{1}^{J F}=0.80$ (3) kHz .

In absolute measurements of ϵ_{c}, the accuracy in determining Δ_{0}^{A} is limited to 20 ppm by the longierm stability and resettability of the voltage source for the C-field. However, in relative measurements where two different anticrossing spectra are observed in the same field, the error contributed by the voltage source is its short-time stability of 2 ppm . This same error applies when the "splitting method" is used [20], in which the total C-field voltage is changed by $\$ 2 \%$ with a second voltage source connected to the lower C-field plate.

In relative measurements, optimum use can be made of the improved accuracy by taking the piece of data in the fit to be either the difference [3] or the ratio of the two zero-field splittings. If the two linear Stark coefficients are equal, then the difference and ratio are equivalent, although the former is often more easily interpreted. If the two linear Stark coefficients are different, the ratio makes better use of the data; the error in μ_{r} cancels in the ratio, but makes a contribution to the difference.

The first step in reducing the data was the determination of b from a relative measurement of the difference in Δ_{0}^{A} between two anticrossings with the same linear Stark coefficient, namely $\left(J, K, \sigma, m_{J}\right)=(3$, $\pm 2,0, \pm 2) \leftrightarrow(3, \mp 1,0, \pm 2)$ and $(5, \pm 2,0, \pm 5)$ $\rightarrow(5, \mp 1,0, \pm 5)$. It was found that $b=2.700(37)$ kHz . We then determined μ_{J} from eq. (4c). The value of $D_{J K}$ was taken from the mm-wave spectrum (see section 6). Preliminary values of the reduced barrier height s, ρ, and the various distortion constants entering $-a_{1}^{J} F$ were adequate because the term in ρ^{2} is
very small. The result for μ_{y} is given in table 1.
The next step was to calculate all the zero-field splittings Δ_{0} from the $\epsilon_{c} \cdot \mu_{J}$ was taken into account, but $\mu_{\mathcal{K}}$ was neglected. The resulting error becomes significant only if $\left|\mu_{K}\right|>5!\mu_{j} \mid$. In addition, $\left(\alpha_{\|}-\right.$ $\left.\alpha_{1}\right)_{\text {eft }}$ was neglected. In this case, the error becomes significant only if $\left|\left(\alpha_{1}-\alpha_{i}\right)_{\text {eff }}\right|>10 \times 10^{-24} \mathrm{~cm}^{3}$. These limits for both $\left|\mu_{K}\right|$ and $\left|\left(\alpha_{1}-\alpha_{\perp}\right)_{\text {eff }}\right|$ seem more than adequate for this molecule. The resulting values for Δ_{0} are listed in table 3 , where Δ_{0} is denoted $\nu_{\sigma_{\alpha}}^{\mathrm{S}}, \sigma_{\beta}$. The superscript S refers to the mixing mechenism (Stark); the superscript H is used in a similar way for the hyperfine anticrossings. (See section 5.2.) The subscripts σ_{α} and σ_{β} indicate the σ-values for the upper level (α) and lower level (β), respectively. The results include eleven absolute measurements, three differences, and one ratio.

The distortion dipole moment μ_{D} was measured with the method developed for OPF_{3} [2] by studying the anticrossing ($J=4, K= \pm 2, \sigma=0, m_{J}= \pm 4$) $\leftrightarrow(4, \mp 1,0, \pm 4)$. The relationship between μ_{D} and the minimum separation ν_{m} for such a crossing in a $\mathrm{C}_{3 \mathrm{v}}$ molecule $[3,6]$ should apply to $\mathrm{CH}_{3} \mathrm{SiF}_{3}$:
$v_{\mathrm{m}}=\mu_{\mathrm{D}} \epsilon_{\mathrm{c}} J[(J-1)(J+2)]^{1 / 2}$.
The applicability of eq. (5) was verified by measurements in $\mathrm{CH}_{3} \mathrm{CF}_{3}$ where it was shown that the $\mu_{\mathrm{D}}{ }^{-}$ values obtained from eq. (5) are independent of J and σ [24]. The present data on $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ show $v_{\mathrm{m}}=$ $(26.5 \pm 7.1) \mathrm{kHz}$ and $\mu_{\mathrm{D}}=2.13(57) \mu \mathrm{D}$. For comparison, μ_{D} in OPF_{3} is $5.856(20) \mu \mathrm{D}$ [3].

5.2. The hyperfine rotational anticrossings

A great many different ($\Delta I=0$) hyperfine anticrossings occur at relatively low field. It was therefore our initial intention to study the selection rules in $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ just as was done in OPF_{3} [3]. By measuring the g-factors of the magnetic components, one can deduce the selection rules on Δm_{H} and Δm_{F}, and obtain some insight into the mechanism providing the mixing matrix element η.

A study of this type was caried out for the series of anticrossings $\left(J=2, K= \pm 2, \sigma_{\alpha}, m_{J}= \pm 2\right) \leftrightarrow(2,0$, $\sigma_{\beta}, 0$). The energy level scheme with $B=0$ is shown in fig. 2. Of the six possible anticrossings, the two involving the upper level with $\Gamma=E_{3}$ were found to be forbidden. For each of the four detected avoided cros-

Table 3
Zero-field splittings Δ_{0} for $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ in the ground torsional state a)

J	Upper state			Lower state			Observed value	Observed calculated	Label
	K_{α}	σ_{α}	Γ_{c}	K_{β}	σ_{β}	Γ_{β}			
2	± 2	0	E_{1}	₹ 1	0	E_{1}	1025.287(20)	0.002	$\nu_{0,0}^{S}$
2	± 2	∓ 1	E_{2}	∓ 1	∓ 1	E_{2}	1050.831 (20)	-0.003	$\nu^{S_{\mp}}{ }_{1, \mp 1}$
2	± 2	± 1	E_{3}	¢ 1	± 1	E_{3}	997.251 (20)	0.002	$\nu_{ \pm 1, \pm 1}^{S}$
3	± 2	0	E_{1}	F 1	0	E_{1}	1025.237(20)	-0.003	$\nu_{0,0}$
3	± 2	F1	E_{2}	∓ 1	∓ 1	E_{2}	1050.786(20)	-0.003	$\nu_{\mp 1, \mp 1}^{\text {S }}$
3	± 2	± 1	E_{3}	∓ 1	± 1	E_{3}	$997.205(20)$	0.002	$\nu \nu_{ \pm 1, \pm 1}^{S}$
5	± 2	0	E_{1}	¢ 1	0	E_{1}	1025.104 (20)	0.000	$\nu_{0,0}^{\text {S }}$
5	$=2$	F1	E_{2}	Fi	∓ 1	E_{2}	1050.650 (20)	-0.005	$v_{\mp 1, \mp 1}^{S_{\mp}}$
3	± 3	0	A_{2}	0	0	A_{2}	3075.860(62)	-0.012	琼, 0
3	± 3	∓ 1	E_{4}	0	∓ 1	E_{4}	3098.841 (62)	-0.019	$\nu_{\mp}^{\text {S }}$, $\ddagger 1$
3	± 3	± 1	E_{4}	0	± 1	E_{4}	3045.424(62)	-0.005	${ }_{\nu} \mathrm{S}_{ \pm 1, \pm 1}$
	$\left.\nu_{0.0}^{\mathrm{S}}(J=2)-\nu_{ \pm 1, \pm 1}^{\mathrm{S}}(J=3) \mathrm{b}\right)$						28.0813(30)	0.0006	relative
	$\left.\nu_{\mp 1, \mp 1}^{S}(J=2)-\nu_{0,0}^{S}(J=3) b\right)$						25.5936(25)	0.0007	relative
	$\left.\nu{ }_{\Im 1, \mp 1}^{S}(J=3)-\nu_{0,0}^{S}(J=3) c\right)$						22.9816 (85)	-0.0071	relative
	$\left.\nu_{0,0}^{\mathrm{S}}(J=3)-\nu_{ \pm 1, \pm 1}^{\mathrm{S}}(J=3) \mathrm{c}\right)$						30.4358 (65)	$-0.006 .7$	relative
	$\left.u_{0,0}^{S}(I=3) / u_{\mp 1, \mp 1}^{S}(I=5) d\right)$						$2.927577(11)$	0.0000018	relative
2	± 2	∓ 1	E_{2}	0	0	A_{1}	1673.639 (33)	0.000	$\nu_{ \pm 1,0}^{\mathrm{H}}$
2	± 2	0	E_{1}	0	± 1	E_{4}	1076.620(20)	0.006	$\nu_{0, \pm 1}^{\mathrm{H}}$
2	± 2	0	E_{1}	0	0	A_{1}	1367.041 (27)	0.012	$\nu_{0,0}^{\mathrm{H}}$
2	± 2	\% 1	E_{2}	0	¢ 1	E_{4}	1383.228 (27)	0.003	$\nu_{\mp 1, \mp 1}^{\mathrm{H}}$
1	± 1	∓ 1	E_{3}	F 1	0	E_{1}	$298.9336(60)$	-0.0008	$\nu_{\text {EA }}$
2	± 1	∓ 1	E_{3}	∓ 1	0	E_{1}	$298.9401(60)$	0.0005	$v_{\text {EA }}$
3	± 1	∓ 1	E_{3}	F 1	0	E_{1}	298.9496(60)	0.0021	${ }^{\nu}$ EA
5	± 1	∓ 1	E_{3}	∓ 1	0	E_{1}	298.9697 (50)	-0.0013	$\nu_{\text {EA }}$
	$\nu_{E A}(J=2)-v_{E A}(J=5)$						-0.0299(12)	0.0016	relative
3	± 1	∓ 1	E_{3}	∓ 1	∓ 1	E_{2}	17.87940 (40)	0.00012	${ }^{\nu}$ EE
4	± 1	∓ 1	E_{3}	∓ 1	∓ 1	E_{2}	17.87990 (40)	0.00000	${ }^{\text {y }}$ EE

a) All values are in MHz , except the ratio.
b) Both anticrossings are from the ($K= \pm 2 \leftrightarrow \mp 1$) series.
c) Both anticrossings are from the ($K= \pm 3 \rightarrow 0$) series.
d) The $(J=3)$ and $(J=5)$ anticrossings are from the $(K= \pm 3 \leftrightarrow 0)$ and ($K= \pm 2 \leftrightarrow \mp 1$) series, respectively.
sings, the spectra were comparable in strength and width to the weaker of the low-field Stark anticrossings. The four crossing fields were measured in the Earth's magnetic field. The resulting zero-field splittings Δ_{0} are listed as $\nu_{\sigma_{\alpha}, \sigma_{\beta}}^{\mathrm{H}}$ in table 3 , using the notation introduced in section 5.1 . Unlike the $\nu_{\sigma_{\alpha}, \sigma_{\beta}}^{\mathrm{S}}$, these $\nu_{\sigma_{\alpha}, \sigma_{\beta}}^{\mathrm{H}}$ can contain a contribution from the hyperine effects
[3]. However, the contribution can be neglected since it is small compared to the $\approx 25 \mathrm{kHz}$ error arising from the calibration of ϵ.

A magnetic fieid of $\approx 0.8 \mathrm{~T}$ was then applied to determine its effects on the ($\sigma_{\alpha}=\mp 1$) $\mapsto\left(\sigma_{d}=0\right)$ member of this series. Since $\Delta m_{\mathrm{T}}=0$ and $\Delta m_{J}= \pm 2$, the spectrum can, a priori, consist of as many as three pairs of magnetic components with selection rules $\left(\Delta m_{\mathrm{H}}=0, \Delta m_{\mathrm{F}}=\mp 2\right),\left(\Delta m_{\mathrm{H}}=\mp 1, \Delta m_{\mathrm{F}}=\mp 1\right)$, and ($\Delta m_{\mathrm{H}}=\mp 2, \Delta m_{\mathrm{F}}=0$). The corresponding g-factor $g_{\text {eff }}$ for each magnetic component in the pair is dominated [3] by the nuclear contribution $\tilde{g} \cong g_{\mathrm{H}} \Delta m_{\mathrm{H}}$ $+g_{\mathrm{F}} \Delta m_{\mathrm{F}}$, where g_{H} and g_{F} are the hydrogen and fluorine g-factors, respectively. Only the magnetic pair with $|\widetilde{g}|=2 g_{\mathrm{H}}$ could be detected. The mixing in this case must therefore be due to a tensor of second rank in I_{H}, most probably the spin--spin interaction between protons. As is discussed in section 7 , a careful measurement of $g_{\text {eff }}$ was used to determine the absolute sign of the rotational g-factor.

A survey with $(B=0)$ of other hyperfine avoided crossings was then attempted. For each of the four observed ($\Delta m_{J}= \pm 2$) anticrossings discussed above, the corresponding ($\Delta m_{J}= \pm 1$) anticrossings were detected. However, the signal-to-noise was significantly lower. It became clear that the experimental work should be preceded by a theoretical investigation of the symmetry properties of the hyperfine hamiltonian under the G_{18} group. This work (currently underway) should predict the selection rules and mixing mechanisms, as was done for $\mathrm{C}_{3 \mathrm{v}}$ moiecules [3]. The resulting estimate for η would be very helpful in the experimental search.

Table 2 lists all the hyperine anticrossings for which searches were made. The major conclusions are that Δm_{J} can be ± 1 or ± 2 and that the torsion-rotation symmetry can change; the same selection rules were obtained [2] for $\mathrm{CH}_{3} \mathrm{CF}_{3}$.

5.3. The barrier anticrossings

In the recent work on methyl silane [4], it was shown that the barrier anticrossings form a series between upper level $(\alpha) \equiv\left(J, K= \pm 1, \sigma_{\alpha}, \Gamma_{\alpha}, m_{J}^{\alpha}\right)$ and lower level $(\beta) \equiv\left(\sigma, K=\mp 1, \sigma_{\beta}, \Gamma_{\beta}, m_{J}^{\beta}\right)$ with selection rules $\Delta \sigma=0, \pm 1$ and $\Delta m_{J}=0, \pm 1, \mp 1, \pm 2, \mp 2$. A typical energy level scheme is illustrated in fig. 1. For each J, there are, a priori, three possible anticrossings. Only two could be detected: these (shown in fig. 1) have $\Gamma=E_{3} \leftrightarrow E_{2}$ and $\Gamma=E_{3} \leftrightarrow E_{1}$. The third could not be detected: this (not shown in fig. 1) has $\Gamma=$ $E_{2} \leftrightarrow E_{1}$ and was concluded to be forbidden. The mixing matrix element η is clearly due to the nuclear hyperfine effects. It was suggested that η is dominated by the dipolar interaction between protons.

To see whether these same conclusion can be drawn for methyltrifluorosilane, a survey with $B=0$ was carried out here of various barier avoided crossings. The results are summarized in table 2. For convenience, the anticrossings are often referred to by their change in torsional symmetry. Thus the ($\Delta \sigma=$ $\pm 1)$ and $(\Delta \sigma=0)$ cases are referred to as EA and EE anticrossings, respectively.

The major $\mathrm{CH}_{3} \mathrm{SiH}_{3}$ conclusions were confirmed. Searches for avoided crossings with $K= \pm 2 \longrightarrow \pm 2$ failed, indicating that, if the energy of rigid rotation is to be conserved in the anticrossing, then $\left|K_{\mathrm{\alpha}}\right|=$ $\left|K_{\beta}\right|=1$. Searches for avoided crossings with $\Gamma=$ $\mathrm{E}_{2} \leftrightarrow \mathrm{E}_{1}$ failed for both $\Delta m_{J}=0$ (as checked in $\mathrm{CH}_{3} \mathrm{SiH}_{3}$) and $\Delta m_{J}= \pm 2$ (not previously checked). Again, it is concluded that $\Gamma=E_{2} \leftrightarrow \mathrm{E}_{1}$ is forbidden.

The evidence regarding the role of the spin-spin interaction is mixed. On the one hand, as was the case in $\mathrm{CH}_{3} \mathrm{SiH}_{3}$, the search for the ($J=3, m_{J}=$ $\pm 2 \leftrightarrow \pm 2$) EA member of the series failed, while all similar $\left(\Delta m_{J}=0\right)$ searches with different $\left(J, m_{J}\right)$ were successful. Because the factor $\left[3 m_{J}^{2}-J(J+1)\right]$ appears in all dipolar η with $\Delta m_{J}=0$, this suggests the dipolar mechanism is dominant. On the other hand, the searches for ($J=2$, EA) anticrossings were successful for ($m_{J}= \pm 2 \rightarrow \pm 2$) and ($m_{J}= \pm 2 \leftrightarrow \pm 1$), but failed for ($m_{J}= \pm 2 \leftrightarrow 0$). This suggests that the dipolar interaction is not dominant for $J=2$. It should be noted that the ($m_{J}= \pm 2 \leftrightarrow 0$) avoided crossing was observed in $\mathrm{CH}_{3} \mathrm{SiH}_{3}$.

To obtain further insight into this problem, a magnetic study of the type described in section 5.2 was
made for the $(J=2, \mathrm{EA})$ anticiossing with $\left(m_{J}=\right.$ $\pm 2 \leftrightarrow \pm 1$). A priori, since ($\Delta m_{J}= \pm 1$), two parts of magnetic components can exist, corresponding to $\left(\Delta m_{\mathrm{H}}=\mp 1, \Delta m_{\mathrm{F}}=0\right)$ and $\left(\Delta m_{\mathrm{H}}=0, \Delta m_{\mathrm{F}}=\mp 1\right)$. Only the former components with $\tilde{g}=g_{\mathrm{H}}$ could be found. This indicates that an interaction involving the off-axis spins in the top is operative. In $\mathrm{CH}_{3} \mathrm{SiH}_{3}$, because both top and frame have the same type of offaxis nuclei, this kind of information distinguishing top and frame interactions cannot be obtained.

The difficulty in interpreting null results should be emphasized, particularly where no systematic pattern has been identified. Conclusions based on such results should be regarded as tentative until their theoretical basis has been established.

Absolute crossing-field measurements were made for six barrier antic ossings. In addition, a relative measurement was made of ϵ_{c} between the $(J=5)$ and ($J=2$) EA avoided crossings. The resulting zero-field splittings Δ_{0} are listed in table 3 as $\nu_{E E}$ and $\nu_{E A}$ for the $(\Delta \sigma=0)$ and $(\Delta \sigma= \pm 1)$ cases, respectively. All these precision measurements were made on $\left(\Delta m_{J}=0\right)$ anticrossings. In such cases, Δ_{0} depends [4] only on the torsional splitting and $\mu_{\varrho}(J, K= \pm 1)$ as defined in eq. (3); these avoided crossings are therefore very well suited to precision studies of H_{TR}.

The spectra used to measure the Δ_{0} were very similar to those obtained for the rotational anticrossings. The EE crossing fields were $\leqslant 150 \mathrm{~V} / \mathrm{cm}$ while the EA crossing fieids fell in the range $250-800 \mathrm{~V} / \mathrm{cm}$. The value of $\Delta \nu_{\mathrm{T}}$ was $\approx 7 \mathrm{kHz}$. The observed line widths $\Delta \nu_{\text {obs }}$ approach this for the lowest ϵ_{c}, but were a little larger for the higher ϵ_{c}.

6. The rotational transitions

The allowed pure rotational spectrum follows the selection rules $(v, J+1, K, \sigma) \leftarrow(v, J, K, \sigma)$. The frequencies $\nu(v, J, K, \sigma)$ can be calculated from eqs. (1) and (2); the only change from the standard expression is the introduction of an effective B-value:

$$
\begin{align*}
& \hat{B}(v, K, \sigma)=B-D_{J m}\left\langle p^{2}\right\rangle_{u K \sigma} \\
& \quad+F_{3 J}\left\langle\frac{1}{2}(1-\cos 3 \alpha)\right\rangle_{u K \sigma} \\
& \quad+F_{9 J}\left\langle\frac{1}{2}(1-\cos 9 \alpha)\right\rangle_{u K \sigma} \tag{6}
\end{align*}
$$

Here $\langle\Omega\rangle_{\text {uKa }}$ represents the diagonal matrix element of operator $\$ 2$ in the representation which diagonalizes the leading torsional terms in eq. (1). This representation is defined in detail in the discussion of eq. (9) of ref. [4]. It is the (v, K, σ)-variation of B that forms the basis of the torsional satellite method [9].

The microwave spectrum has most recently been investigated by Durig et al. [13]. Frequencies were reported for $1 \leqslant J \leqslant 4$ and $0 \leqslant v \leqslant 3$. The errors quoted for $v=0$ are 40 kHz ; no errors were specified for $v>0$. The measurements along with the enors assumed here are listed in tables 4 and 5 for $v \leqslant 2$ and $v=3$, respectively. For $v=0$ and 1 , no splittings were observed. Since a Stark-modulated spectrometer was used, it can be assumed that the ($K=0$) component did not contribute significantly. The observed frequency is then the average of $v(v, J, K, \sigma)$ over the remaining (K, σ) weighted by the corresponding intensities. In view of this averaging, the errors for $v=0$ and 1 were taken as 100 and 200 kHz , respectively. For $v=2$ and 3 , the σ-splitting was resolved, but not the K-splitting. In this case the K-averaging is done separately for ($\sigma=0$) and ($\sigma= \pm 1$). Because less averaging is required for each line, the errors were reduced to 150 kHz .

The data set for the pure rotational transitions was extended by studying the ground-state spectra for $J=13 \leftarrow 12$ and $14 \leftarrow 13$ with a saturation-modulation mm-wave spectrometer [25] and for $J=1 \leftarrow 0$ with the MBER method [4]. For the mm-wave spectra, the K-splitting was resolved. In all cases, the σ-splitting could not be resolved. Each observed frequency is then the average of $v(0, J, K, \sigma)$ over σ. The measurements are listed in table 4.

7. The rotational g-factors

The Zeeman effect on the normal MBER spectrum was studied to obtain g_{11} and g_{\perp}, the molecular g-factors for rotation, respectively, parallel and perpendicular to the molecular symmetry axis. The techniques used are treated in detail elsewhere $[16,19,3]$. When a large magnetic field B is applied parallel to ε, each Stark multiplet (see section 4) splits into two lines separated by $2 \mu_{\mathrm{N}} B|g(J, K)|$, where
$g(J, K)=g_{1}+\left(g_{1}-g_{1}\right) K^{2} / J(J+1)$.
Effects due to nuclear shielding and internal rotation

Table 4
Pure rotational frequencies for $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ for $v=0,1$, and 2 a)

u	Upper state			Lower state			Obseryed value	Observed calculated	Average over ${ }^{\text {b }}$)
	J_{α}	K_{α}	σ_{α}	J_{β}	K_{β}	σ_{β}			
0	1	0		0	0		7431.323(15)	0.006	σ
0	2			1			14862.54 (10)	-0.07	K, σ
1	2			1			14844.72 (20)	-0.30	K, σ
2	2		0	1		0	14828.45 (15)	0.18	K
2	2		± 1	1		± 1	14829.49 (15)	-0.11	K
0	3			2			22293.86 (10)	0.02	K, σ
1	3			2			22267.49 (20)	0.03	\boldsymbol{K}, σ
2	3		0	2		0	22242.30 (15)	-0.04	K
2	3		± 1	2		± 1	22 244.38(15)	0.02	K
0	4			3			$29725.02(10)$	0.03	K, σ
1	4			3			29689.87 (20)	0.03	K, σ
2	4		0	3		0	$29656.55(15)$	0.23	K
2	4		+1	3		± 1	$29659.06(15)$	0.03	K
0	5			4			37156.13 (10)	0.10	K, σ
1	5			4			37112.17 (20)	0.07	K, σ
2	5		0	4		0	$37069.92(15)$	-0.28	K
2	5		± 1	4		± 1	37073.62 (15)	0.06	K
0	13	± 5		12	± 5		$96597.995(50)$	-0.020	σ
0	13	± 6		12	± 6		$96597.278(50)$	-0.007	σ
0	13	± 7		12	± 7		$96596.435(50)$	-0.005	σ
0	13	± 8		12	± 8		$96595.445(50)$	-0.015	σ
0	13	± 9		12	± 9		96594.343 (50)	0.007	σ
0	13	± 10		12	± 10		95593.100 (50)	0.004	${ }^{\circ}$
0	13	± 11		12	± 11		96591.725 (50)	0.001	σ
0	13	± 12		12	± 12		96590.185 (50)	-0.022	σ
0	14	± 3		13	± 3		$111457.568(100)$	0.000	σ
0	14	± 4		13	± 4		111457.042 (50)	-0.007	σ
0	14	± 5		13	± 5		111456.364 (50)	-0.006	σ
0	14	± 6		13	± 6		111455.527 (50)	0.000	σ
0	14	± 7		13	± 7		$111454.569(50)$	0.017	σ
0	14	± 8		13	± 8		$111453.428(50)$	0.007	σ
0	14	± 9		13	± 9		111 452.133(50)	0.008	σ
0	14	± 10		13	± 10		$111450.707(50)$	0.012	σ
0	14	± 11		13	± 11		$111449.116(50)$	0.005	σ

a) All values are in MHz . The microwave frequencies between 14 and 40 GHz are taken from Durig et al. [13]. The mm-wave frequencies and the $J=1-0$ transition were measured in the current work.
b) The splittings associnted with the quantum numbers listed were not resolved. The frequencies listed therefore represent an average over these quantum numbers, with $K=0$ being excluded from the Stark-modulated data (i.c. the results taken from ref. [13]).
are negligible here. No attempt was made to determine the anisotropy in the magnetic susceptibility.

From Zeeman splittings measured for $B=$ $819.93(17) \mathrm{mT}$, it was determined that $|g(1,0)|=$ $0.0178(2) ;|g(3, \pm 2)|=0.0202(2)$ and $|g(3, \pm 3)|=$ $0.0234(3)$, all in units of the nuclear magneton μ_{N}. From three different $|g(J, K)|$, we determined the magnitudes of g_{1} and g_{1}, as well as showing that $g_{\mathbb{1}} / g_{i}>0$.

The absolute signs of the g-factors were obtained by the anticrossing method $[3]$ using the hyperfine rotational avoided crossing $(J=2, K= \pm 2, \sigma=\mp 1$, $\left.m_{J}= \pm 2\right) \leftrightarrow(2,0,0,0)$. As discussed in section 5.2, this anticrossing spectrum splits into two components. As with the allowed spectrum, the separation is given by $2 \mu_{\mathrm{N}} B$ times an effective g-factor $g_{\text {ef. }}$. In this case, however [3],

Tabile 5
Pure rotational frequencies for $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ for $v=3$ a)

$x \mathrm{~b})$	Torsional symmetry	Observed value	Piedicted value	$\delta \mathrm{c})$	$\delta /(J+1)$
1	A	$14813.84(15)$	$14818.07(13)$	$-4.23(14)$	-2.12
2	A	$22220.73(15)$	$22227.00(21)$	$-6.27(21)$	-2.09
3	A	$29627.67(15)$	$29635.74(28)$	$-8.07(27)$	-2.02
4	A	$37034.58(15)$	$37044.40(35)$	$-9.82(34)$	-1.96
1	E	$14810.56(15)$	$14813.53(11)$	$-2.97(11)$	-1.49
2	E	$22215.52(15)$	$22220.19(17)$	$-4.67(16)$	-1.56
3	E	$29.620 .81(15)$	$29.626 .79(23)$	$-5.98(22)$	-1.50
4	E	$\mathbf{3 7 0 2 5 . 4 9 (1 5)}$	$37033.32(28)$	$-7.83(27)$	-1.57

a) All values ere in MHz. The observed frequencies are taken from Durig et al. [13], along with the assignment, here referred to as $\ddot{\# 1}$. In an alternative (allueit speculative) identification, here referred to as $\% 2$, the uppcr four observed frequencies are assigned to the corresponding E lines.
b) This refers to the lower level in the $(J+1 \leftarrow J)$ transition.
c) $\delta \equiv$ (observed-predicted).
$g_{\text {eff }}=2 g_{\mathrm{H}}-2 g(2, \pm 2)$.
From measurements made with $B=800.55$ (17) mT and the known value of g_{H} [26], it was determined that $g(2, \pm 2)=-0.0252(30) \mathrm{nm}$, showing that both g-factors are negative. With the magnitudes and relative signs of $g_{\|}$and g_{\perp} determined from the normal spectrum, it follows from eq. (7) that $|g(2, \pm 2)|=$ $0.0227(4)$. The good agreement between the two magnitudes provides a stringent test for the data. The final values for $g_{\|}$and g_{\perp} are given in table 1.

8. Analysis and discussion

A simultaneous analysis of the anticrossing splittings in table $3(v=0)$ and the rotational frequencies in table $4(v \leqslant 2)$ was carried out in an attempt to determine A, B, ρ, V_{3} and the various distortion constants. The ($v=3$) data in table 5 are discussed below. The method of analysis and its results closely parallel those for $\mathrm{CH}_{3} \mathrm{SiH}_{3}[4,7]$.

The anticrossing splittings provide essentially six pieces of information. A vaiue of ρ is obtained with is independent of the other parameters in eqs. (1) and (2) except through a small correction term that is a function only of the reduced barrier height s [7]. Since ρ can be obtained directly from the ratio $\nu_{E A}(J=3) / \nu_{E E}(J=3), \rho$ is also highly insensitive to the uncertainties in the dipole moment. The second piece of information is a very accurate value of s itself,
determined directly from energy splittings rather than from wavefunctions as in the torsional satellite method.

Three linear combinations of $A, D_{K}, D_{K m}$, and $F_{3 K}$ are obtained by combining measurements from three types of anticrossings: barrier, Stark rotation with ($K= \pm 2 \leftrightarrow \mp 1$) and Stark rotation with ($K=$ $\pm 3 \leftrightarrow 0$). The hyperfine rotational avoided crossings ($K= \pm 2 \leftrightarrow 0$) do not break the correlations. Because the term in D_{K} goes as K^{4}, it can be separated from the others; the most important measurement in this regard is the relative measurement (ratio) of a ($J=3$, $K= \pm 3 \leftrightarrow 0$) anticrossing with a ($J=5, K= \pm 2 \leftrightarrow \mp 1$) anticrossing. The terms associated with $A, D_{K m}$, and $F_{3 K}$ all go as K^{2}. These three constants cannot be isolated; instead, two effective parameters are determined [4,7]:
$A^{\mathrm{eff}}=A-D_{K m} \overline{\left\langle p^{2}\right\rangle_{0}}+F_{3 K}\left\langle\overline{\left.\frac{1}{2}(1-\cos 3 \alpha)\right\rangle_{0}}\right.$,
$D_{K m}^{\mathrm{eff}}=D_{K m}+\lambda F_{3 K}$.
Here $\overline{\langle\Omega\rangle}_{v=0}$ is the unweighted average over σ of the diagonal matrix elements ($\mathbf{\Omega})_{v-0, K, \sigma}$ of operator $\boldsymbol{\Omega}$. For $v=0$, this average is independent of K to an accuracy much higher than necessary [7]. λ is a numerical factor whose value for $\mathrm{CH}_{3} \mathrm{SiF}_{3}$ is 0.01099 . Its definition in terms of the matrix elements $\left\langle p^{2}\right\rangle_{v=0, K ; \sigma}$ and $\left\langle\frac{1}{2}(1-\cos 3 \alpha)\right\rangle_{v=0, K, \sigma}$ is given in ref. [7].

The value of V_{3} is obtained from s using $s \equiv \frac{4}{9} V_{3} / F$.
F is not a firee parameter, but is calculated from A $\rho(1-\rho)$. Since only A eff is known, it follows that the value obtained for the barrier height is also an effective parameter:
$V_{3}^{\mathrm{efi}}=\frac{9}{4} s A^{\mathrm{eff}} / \rho(1-\rho)$.
The last piece of infomation obtained from the anticrossings data is the J-dependence of the torsional splitiongs, which is determined by $F_{3 J}, F_{9 J}$, and $D_{J m}$. However, the rotational frequencies are more sensitive to these constants. The main impact of the beam data in this regard is to require the introduction of $F_{9 J}$. If $F_{Q J}$ is fixed at zero, then the J-dependence of the anticrossing data is inconsistent with the rotationa spectrum. The introduction of either $F_{6 J}$ or $F_{9 J}$ removes this difficulty, with the latter providing a slightly better fit. In $\mathrm{CH}_{3} \mathrm{SiH}_{3}$, the F_{gI} fit was also superior. In that case, the improvement was striking [4], leading us to prefer the $F_{9 J}$ fit in the current work.

The parameters obtained from the least-squares fit to the $(v \leqslant 2)$ data are listed in table 1 . The differences between the observed and calculated frequencies are given in tables 3 and 4 ; the χ^{2} for the best fit is 14 . The overall agreement is excellent. If $F_{6 J}$ is used instead of $F_{9 J}$, the major differences are small changes in four parameters: 30 kHz in B and $A, 6 \mathrm{kHz}$ in D_{Jm} and 650 kHz in $F_{3 J}$. Various constants have been onitted from eq. (2) that are of the same order as those retained. See eq. (6) of ref. [4]. None of these was determinable.
in table 5 the frequencies predicted for $v=3$ with the best-fit parameters of table 1 are compared to the experimental measurements using the original assignment $[11,13]$, here referred to as $\div 1$. The differences are larger than the errors by a factor of over 25 and are closely proportional to $(I+1)$. An allenative identification, here referred to as $\% 2$, is suggested by table 5 . The four upper observed frequencies in table 5 are assigned to the corresponding E lines. The value of $\delta \equiv$ (observed - predicted) is improved dramatically for each of the four lines. However, if this identification is to be adopted, an explanation must be found for the fact that the A lines were not observed [11,13] even though they are expected to be comparable in strength to the E lines. To clarify this point, a Siark-modulated spectrometer was used to reinvestigate the $(J=5 \leftarrow 4)$ spectrum for $v=3$. No line of suitable intensity could be found in the region predicted for the A line in assignment $\% 2$. It must be
concluded that the reduction in δ mentioned above were fortuitous and that the original identification is correct.

For identification $\# 1$, a satisfactory fit to all the $(v \leqslant 3)$ data could not be achieved with torsionrotation terms previously discussed $[4,7,10-12,14]$. The torsional energy $E_{\mathrm{T}}(v=3, K, c=0)$ lies only $\approx 4 \mathrm{~cm}^{-1}$ above the top of the barrier, while $E_{\mathrm{T}}(3$, $K, \pm 1)$ falls below by $\approx 24 \mathrm{~cm}^{-1}$. The A levels would be very sensitive to a small increase in the barrier height, while the E levels would be particularly sensitive to the shape of the patential. The current model may not represent these effects properly. The failure of the fit may also be due to a perturbation of the $(v=3)$ level by a low-lying fundamental. However, the same type of breakdown of the internal rotation model was noted in methyl silane, where the problem of low-lying fundamentals is less severe.

The true values of A and V_{3} were obtained, as for $\mathrm{CH}_{3} \mathrm{SiH}_{3}$ [4], by making two additional fits, one with $D_{K m} \equiv 0$ and the other with $F_{3 K} \equiv 0$. From the resulting variation in A and V_{3}, it was determined that:
$A=4059.3 \pm 1.5 \mathrm{MHz}$,
$V_{3}=413.97 \pm 0.20 \mathrm{~cm}^{-1}$.
Although the correlation effects have been removed from the results in eq. (10), they will contain contributions from the higher-order terms [7,10, 12]. For A, these are expected to be negligible compared to the error, but for V_{3} they may be $\approx 1 \%$ and hence significant.

The torsional satellite method was used by Kirtman [11] to analyse the $(J=5 \leftarrow 4)$ spectrum of $\mathrm{CH}_{3} \mathrm{SiF}_{3}$. After conversion [4] to the current notation, his results for the constants in the effective B-value are (in MHz): $B=3717.86 ; F_{3}=-19.314 ; D_{J m}=0.1105$. No errors were quoted. The value for V_{3} was 485 (35) cm^{-1}. The agreement with the current results is good, particularly when it is recognized that only three microwave frequencies were used along with assumed values for some of the structural parameters.

With the current results it is possible to do a large part of the r_{z} structure determination using only sym-metric-top data corrected for torsional effects. The value of ρ will deviate from $I_{\alpha} /\left(l_{\alpha}+I_{\mathrm{f}}\right)$ only through the omission of a small correction term [7], a step which is required by the redundancy relations $[7,12]$.

If this is neglected, then it follows from the values of A and ρ that $I_{\alpha}=3.170(2)$ amu \AA^{2} and $I_{\mathrm{f}}=121.329$ (47) amu \AA^{2}. The value of I_{c} obtained for $\mathrm{CH}_{3} \mathrm{SiH}_{3}$ in a similar manuer [4] was $3.165(5)$ amu \AA^{2}. The close agreement between the two measurements of I_{α} indicates that the redundancy correction is negligible. From I_{α}, the distance S_{H} of the hydrogen atom from the symmetry axis was determined to be 1.0239 (3) A . From I_{f}, the corresponding distance S_{F} for the fluorine atom was found to be 1.4590 (3) \AA.

To pursue the structure further, the moment of inertia I_{b} for the direction perpendicular to the symmetry axis was calculated for each of three different isotopic species. For the parent species $\mathrm{CH}_{3} \mathrm{SiF}_{3}, I_{b}$ $=135.926(9)$ amu \AA^{2}, as obtained directly from B in table 1. For ${ }^{13} \mathrm{CH}_{3} \mathrm{SiF}_{3}, I_{b}=139.392(9)$ amu \AA^{2}. Here the B-value was calculated from the effective value for the ground state [13] by assuming in eq. (6) that the torsional terms are the same as in the parent species. For $\mathrm{CD}_{3} \mathrm{SiF}_{3}, I_{b}=152.386(9)$ amu \AA^{2}. Here B was obtained (along with $F_{3 J}$ and $D_{I m}$) by refitting the data reported by Kirtman [11]. In the analysis, A and ρ were corrected for the deuteration and then fixed. The remaining parameters were assumed to have the same values as in the parent species.

The structure of the methyl top was then calculated: $r_{\mathrm{CH}}=1.0940(6) \AA$ and $\angle \mathrm{HCSi}=110.63(4)^{\circ}$. These are in reasonable agreement with the results of Duriget al.: $r_{\mathrm{CH}}=1.081$ (4) A and $\angle \mathrm{HCSi}=$ $111.02(50)^{\circ}$; this earlier analysis, of course, used both symmetric- and asymmetric-top data. In the current work, the positions relative to the centre of mass were determined for the carbon atom and the projection of the hydrogen atoms on the symmetry axis. However, the corresponding displacement for the silicon atom could not be obtained because it is too close to the centre of mass.

Acknowledgement

The authors wish to thank Dr. A. Dymanus for many fruitful discussions of this problem, in addition to his continued guidance and inspiration in the field of molecular spectroscopy. The authors would like to thank Dr. P.J.M. Kuijpers for his assistance in obtaining the mm-wave data, and Dr. M. Wong for taking the preliminary microwave spectra around 37 GHz . One
of us (IO) wishes to express his appreciation to the National Sciences and Engineering Research Council of Canada for its support. Both authors would like to thank the North Atlantic Treaty Organization Research Grant Program for its assistance through Travel Grant No. 1454.

References

[1] I. Ozier and W.L. Meerts, Phys. Rev. Letters 40 (1978) 226.
[2] W.L. Meerts and I. Ozier, Phys. Rev. Letters 41 (1978) 1109.
[3] L. Ozier and W.L. Meerts, Can. J. Phys. 59 (1981) 150.
[4] W.L. Meerts and I. Ozier, J. Mol. Spectry., to be published.
[5] J.K.G. Watson, J. Mol. Spectry. 40 (1971) 536.
[6] M.R. Aliev and V.M. Mikhaylov, J. Mol. Spectry, 49 (1974) 18.
[7] M. Wong, I. Ozier and WL. Meerts, in preparation.
[8] E. Hirota, J. Mol. Spectry. 43 (1972) 36.
[9] D. Kivelson, J. Chem. Phys. 22 (1954) 1733; 23 (1955) 2230; 27 (1957) 980.
[10] C.C. Lin and J.D. Swalen, Rev. Mod. Phys. 31 (1959) 841.
[11] B. Kirtman, J. Chem. Phys. 37 (1962) 2516.
[12] R.M. Lees and J.G. Baker, J. Chem. Phys. 48 (1968) 5299.
[13] J.R. Durig, Y.S. Li and C.C. Tong, J. Mol Struct. 14 (1972) 255.
[14] R.M. Lees, J. Chem. Phys. 59 (1973) 2690.
[15] Y.Y. Kwan and D.M. Dennison, J. Mol. Spectry. 43 (1972) 291.
[16] I. Ozier and WL. Meerts, J. Mol. Spectry. 93 (1982) 164.
[17] P.R. Bunker, Mol. Phys. 9 (1965) 257.
[18] E.R. Cohen and B.N. Taylor, J. Phys. Chem. Ref. Data 2 (1973) 663.
[19] W.L. Meerts, I. Ozier and A. Dymanus, Can. J. Phys. 57 (1979) 1163.
[20] W.L. Meerts and I. Ozier, J. Chem. Phys. 75 (1981) 596.
[21] F.H. de Leeuw and A. Dymanus, J. Mol. Spectry. 48 (1973) 427;
F.H. de Leeuw, Thesis, Katholieke Universiteit, Nijmegen, The Netherlands (1971).
[22] J.M.L.J. Reinartz and A. Dymanus, Chem. Phys. Letters 24 (1974) 346.
[23] J.K.G. Watson, M. Takami and T. Oka, J. Chem. Phys. 70 (1979) 5376.
[24] W.L. Meerts and I. Ozier, 33rd Symposium on Molecular Spectroscopy, The Ohio State University, Columbus, Ohio, USA, June 12-16, 1978, paper MG6.
[25] P.J.M. Kuijpers, T. Törring and A. Dymanus, 2. Naturforsch. 30 a (1975) 1256.
[26] G.H. Fuller, J. Phys. Chem. Ref. Data 5 (1976) 835.

[^0]: \# In labelling an anticrossing, the first set of quantum numbers always refers to upper level α and the second set refers to lower level β.

