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A new avoided-crossing technique using a conventional molecular beam electric resonance 
spectrometer has been developed for studying symmetric rotors. By means of an external electric 
field, two levels with different values of K are made nearly degenerate and normally forbidden 
electric-dipole transitions between the interacting levels are observed. Mixing matrix elements 
qsr with AK = +3 arise from the centrifugal distortion dipole moment p, and mixing terms ~ H Y I .  

with AK = k 1, k 2  arise from the nuclear hyperfine Hamiltonian. Explicit expressions for q,lyl ,  are 
given in an Appendix. Many of these terms break the symmetry of both the rotational and nuclear 
spin parts of the wave functions. The avoided-crossing method is discussed in detail, with 
emphasis on its application to the measurement of ( A ,  - B, ) .  It is shown how the technique can be 
used to determine the perpendicular moment p,, as well as pJ and p,, the constants which 
characterize the dependence of the parallel dipole moment p on J and K, respectively. Other 
applications include the experimental investigation of the selection rules for the individual terms 
in qllYr, and the determination of the sign of the rotational g-factors gll and g.. The method has 
been applied to phosphoryl fluoride (OPF,). It has been determined that ( A ,  - B,) = 217.4987(44) 
MHz, p ,  = 5.856(20) x D, pJ = -3.38(10) x D, and bothgl, and glare negative. 

On a developpe une nouvelle technique de croisements evites utilisant un spectrometre 
conventionnel a resonance electrique de faisceau moleculaire pour I'etude de rotateurs 
symetriques. Au moyen d'un champ electrique extirieur deux niveaux ayant des valeurs diffe- 
rentes de K sont rendus presque degeneres, et I'interaction entre les niveaux permet d'observer 
des transitions de dipble electrique normalement defendues. Des elements de matrice q s ~  avec 
AK = k 3  proviennent du moment dipolaire de distortion centrifuge p,,, et des termes de melange 
qttyp avec AK = + 1, k 2  proviennent de I'hamiltonien de structure hyperfine. Des expressions 
explicites pour q,,,,,sont donnees en Appendice. Plusieurs de ces termes brisent la symetrie de la 
partie rotationnelle et de la partie spin nucleaire des fonctions d'onde. On discute de fason 
detaillee la methode des croisements evites, en insistant particulierement sur son application a la 
mesure de (A, - Bo). On montre comment la technique peut Ctre utilisee pour determiner le 
moment perpendiculaire p,,aussi bien que p, et p,, les constantes qui caracterisent l a f a~on  dont 
le moment de dipble depend de J et K respectivement. Parmi les autres applictions, il y a I'etude 
experimentale des regles de selection pour les termes individuels dans qllvl. et la determination du 
signe des facteursg rotationnels,g ~ ~ e t g , .  La methode aiteappliqueeau fluorure de phosphoryle 
(OPF,). On a determine que (A, - Bo) = 217,4987(44) MHz, pi, = 5,856(20) x D, pJ = 
-3,38(10) x D, et que g11 e tg ,  sont tous deux negatifs. 

Can. J .  Phys.,59,150(1981) 
[Traduit par le journal] 

1. Introduction 
Symmetry properties often make important molec- 

ular parameters inaccessible to the spectroscopist. 
For a polar symmetric top, the normal electric dipole 
moment p lies along the symmetry axis. This leads 
directly to the well-known (AK = 0)  selection rule 
for electric dipole transitions within the ground 
vibronic state and thereby makes it impossible to 
apply conventional microwave methods to the 

measurement of A,,  a constant of prime importance 
in the determination of molecular structures. In the 
current work, a simple avoided-crossing technique 
(1)' based on the molecular beam electric resonance 
(mber) method is described in which the (AK = 0) 
selection rule is broken along with other selection 
rules dealing with the conservation of the symmetry 
of the rotational and nuclear spin parts of the wave 
function. No other technique for observing radiative 

'Permanent address: Department of Physics, University of 2A preIiminary report of part of this work was given in 
British Columbia, Vancouver, B.C., V6T 1W5. ref. 1. 
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transitions resulting from sucn symmetry breaking 
has been previously developed for symmetric rotors. 

In addition to providing a precision value for A,,  
this anticrossing method can be used to investigate a 
series of other interesting molecular problems. First, 
the effects of centrifugal distortion on the electric 
dipole operator can be studied in detail. These effects 
generate a small moment pD perpendicular to the 
axis (2, 3) and cause the magnitude of the parallel 
moment to become a function of J and K. For matrix 
elements diagonal in J ,  this function takes the form 
(4) 

where p, is the equilibrium moment (except for a 
small correction), while p, and pK are distortion 
dipole  constant^.^ In favorable cases, p,, p,, and p, 
can all be determined by the current technique in 
spite of the fact that each is typically five to six orders 
of magnitude smaller than p,. Second, the nuclear 
hyperfine interactions can be investigated. Measure- 
ments of the terms diagonal in IK( can act as a useful 
complement to results obtainable with previous 
methods. Perhaps more important, the terms off- 
diagonal in lKI can be studied; terms of this type are 
inaccessible to conventional spectroscopy. These off- 
diagonal matrix elements can provide an important 
mechanism for the relaxation of interstellar molecules 
(6). Third, the sign of the rotational g-factor can be 
determined. This sign is often difficult to obtain, since 
many of the standard methods (7) of studying 
g-factors yield only the magnitude. These different 
applications of the anticrossing method are discussed 
here with respect to phosphoryl fluoride (OPF,). In  
a later work, the application recently introduced (8) 
of the method to the study of internal rotation will 
be treated in detail. 

The essential features of the technique can be 
explained in terms of a simple two level problem. 
Consider a pair of levels in the isolated molecule in 
field-free space with different K values such that the 
state of higher energy E,(K,) has a negative Stark 
effect and that of lower energy Eo(Kp) has a positive 
Stark effect. Such a situation is illustrated in Fig. 1 
where K, = f 2 and Kp = T 1 .4 Here E0(_+2) > 
Eo(T1) because OPF, is a prolate rotor. The 
molecular is placed in a homogeneous external 
electric field 6 which is increased until the difference 

WITH ENERGY Eb 
- r \ IN GROUP El 

FIG. l .  Schematic plot against electric field of the energies of 
two anticrossing levels. The breaks in the energy levels allow 
the central region to be plotted on a different scale where both 
coordinates are greatly expanded. As an example of the 
general problem illustrated here, la) -t IJ. = 2, K. = 
+ 2,t?1JU = + 2,mpz = + $, m," = + Q) and Ib)  + 1 JD = 
2,Kp = T l,mJ" ? 2, mpa = + +,mFm = + 4). Each level 
is labelled by its high field quantum numbers for & << Gc.  

As, in the Stark energies exactly cancels the difference 
A, - [E,(K,) - Eo(Kp)] in the zero field energies. 
At this particular field, termed the "crossing" field 
&,, the two levels will undergo an avoided crossing 
provided there is a non-zero coupling matrix element 
q. At & = &,, the two levels have their minimum 
separation v, = 2 1q 1 .  There are two types of avoided 
crossings: Stark anticrossings in which q arises from 
the interaction of pD and I ,  and hypetfine anti- 
crossings in which q arises from nuclear hyperfine 
interactions. 

The two principal parameters, 6, and v,, that 
characterize the anticrossing can be measured with a 
conventional mber spectrometer. For values of 8 
near &,, the two interacting levels are thoroughly 
mixed and transitions between them are easily 
driven through p by applying an oscillating electric 
field &,,. To lowest order, &, is proportional to 
A,/p. If a magnetic field B is applied in addition to 8, 
then 6, is still defined by the condition that the 
energy difference in the absence of mixing vanishes, 
but now the Zeeman contribution must be taken into 

31n order to  conform to  the conventions adopted by other account. this case, 6, is a function of A,, p, alld 
authors, e.g., ref. 5, the signs of p, and p, here have been 
reversed relative to those used in ref. 1. g,,,B, where g,,, is the effective g-factor for the 

4Unless otherwise specified, it will be assumed throughout anticrossing. 
that upper signs go with upper signs and lower with lower. Recently, a number of related studies of 1 6 0 p ~ ,  
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TABLE I. Molecular constants for OPF, in the ground vibronic 
state 

Quantity 

DJ (kHz) 
DJK (kHz) 
DI; (kHz) 

Value 

4594.2624(5) 
217.4987(44)" 
217.4954(18) 
217.54(5) 

1.0119(12) 
1 ,2971 (7) 

- I .114(12) 
1.86847(10) 
5.856(20) x 

- 3 . 3 8 ( 1 0 ) ~  
- 0.04460(4) 
- 0.03370(30) 

Reference 

10 
Present work 
11 
12 
10, 11" 
11  
I 1  
9 
Present work 
Present work 
9, present work' 
9, 'present worke 

'There is a small difference from the value given in the preliminary 
report in ref. 1 because minor refinements were made in the analysis. 

bThis value was obtained in ref. I 1  by reanalysing the data in ref. 10. 
'The magnitudes of pn,  p ~ ,  and p, were determined along with the relative 

sign of  pJ and pn  (see footnote 3). 
*Thisisactually p,asobtained from theallowed transition (.IK = 33+2,r,1~ = 

T I -> 0) selected as reference, but Ipo - p.1 is negligible compared to the 
absolute error. 

 the magniti~des and relalive sign of  gl and g ,  were determined in ref. 9. 
The absolute sign was established in the present work. 

and matrix elements are given, the focussing problem 
is treated, the lowest crossing fields are calculated, 
and the detailed form of the spectrum is derived. The 
different applications and their accuracy limitations 
are discussed. Finally, the two-level assumption is 
justified. In Sect. 2 0 ,  a similar treatment of the 
hyperfine anticrossings is presented. In this case, the 
coupling matrix elements are more complicated and 
are presented in the Appendix. Magnetic effects 
receive more attention. The general use of the lowest 
crossing field of the (AJ = 0) type for measuring 
(A, - B,) is discussed. 

In Sect. 3, the experimental aspects of the method 
are treated with emphasis on the C-field. The 
ultimate limitation on the highest (A, - B,) that 
can be measured for a given p is discussed. In Sect. 4, 
the results for OPF3 are given and, in Sect. 5, a brief 
discussion is presented comparing the current tech- 
nique to some of the other methods of measuring A,. 

2. Theory 

in the ground vibronic state have been carried out. A. The High Field Energies 

Some of the results are summarized in Table 1. A The effective Hamiltonian for a symmetric top in 

detailed conventional mber experiment (9) has been external electric and magnetic fields can be written 
. , 

completed, giving a precision value for p,, many of as : 

the nuclear hyperfine constants, and the magnitudes [2] H = HRoT + HsT + Hz + HHyp 
of the rotational g-factors. Both the "normal" mm 
spectrum (10) driven by p with selection rules 
AJ = + 1, AK = 0 and the "forbidden" microwave 
spectrum ( 1 1 ) ~  driven by p, with selection rules 
AJ = 0, AK = + 3 have been observed. An analysis 
(11) of the combined data set yielded B,, A,, the 
three quartic distortion constants Dj, DJK, and D,, 
and the four sextic distortion constants. Most 
recently, laser Stark spectroscopy (12) has been used 
to observe anticrossings of the Stark type to give a 
value for (A, - B,). Much of the theoretical analysis 
developed here for the mber experiments may 
ultimately find application in such laser-Stark 
studies. The conventional mber method (9), the 
mm-wave spectroscopy (lo), and the laser Stark 
methods (13) have all been applied to various 
excited vibrational states. 

In the following section, the theoretical aspects of 
the current method are discussed. In Sect. 2A, the 
high-field representation used to calculate the 
Hamiltonian matrix in the crossing region is 
described and, in Sect. 2B, the two level problem is 
solved in detail. The Stark anticrossings are then 
discussed in Sect. 2C. The coupling selection rules 

5The preliminary avoided-crossing molecular-beam work in 
ref. 1 and microwave work in ref. 11 were carried out con- 
currently. 

HRoT is the rotational Hamiltonian. HsT and Hz are, 
respectively, the interactions with & and B, which 
are parallel in the current work. HHyp is the nuclear 
hyperfine contribution. In OPF3 with the two 
magnetic nuclei P and F, this is made up of two 
spin-rotation interactions, HIJP and HIJF, and two 
spin-spin interactions, HIIPF and HI,FF. In typical 
high-field mber spectroscopy, the energies corre- 
sponding to the four terms in [2] form the hierarchy 
IEROTI >> IEsTI >> IEzl 2 IEHYPI. 

The space-fixed coordinate system is oriented with 
2 along the common direction of & and B. The 
molecule-fixed coordinate system is oriented with 2 
along the symmetry axis. The fluorine nuclei are 
numbered 1, 2, and 3 in a clockwise direction as one 
looks in the positive z direction; nucleus No. 1 is in 
the yz plane, which consequently is one of the ov 
planes of the molecule. This orientation is illustrated 
in Fig. 3a of Wofsy et al. (14). 

The high-field representation (9, 14) used here is 
characterized by the quantum numbers (J,K,mJ; 
Ip,mP;IF,mF). The fluorine nuclear spin IF = 312 or 
112 corresponding, respectively, to K = 3N (N an 
integer) and K # 3N. m,, m,, and m, are, respec- 
tively, the eigenvalues of the Z-component of J, I,, 
and IF. The sum n7, = m, + m, + mF is the eigen- 
value of the Z-component of the total angular 
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momentum. The basis functions in this representa- 
tion are discussed in the Appendix. 

This high-field representation forms the zeroth 
order basis for calculating the Hamiltonian matrix 
in the anticrossing regions. It is therefore necessary 
to define clearly the conditions under which the off- 
diagonal matrix elements of H can be neglected. 
First, & is assumed to be large enough that the matrix 
elements of HHyp with (AK = 0, Am, # 0) can be 
dropped. Second, & is assumed to be far enough 
from any crossing field that the coupling q off- 
diagonal in K can be neglected. Finally, B is taken to 
be > 2  mT to lift certain degeneracies as described 
below. The only significant off-diagonal matrix 
elements remaining are those due to p and these 
have only AJ # 0.6 

Under these conditions, the high field energy Ea 
for state la) is calculated by two different methods. 
In the first, EST is calculated by perturbation theory, 
while the diagonal matrix elements are used for the 
other three terms in [2]. A second-order treatment of 
HsT is very instructive and will be outlined here. A 
third-order treatment (9) is required for preliminary 
analysis. T o  obtain the accuracy required for the 
final results, the second method is used. The full 
matrix HRoT + HsT is diagonalized after truncation 
at AJ 2 3. Hz and HHyp are still treated in the 
original high-field representation. 

The rotational energy, in SI units, is given by 

The fundamental constants given in ref. 15 are used. 
The molecular constants are in Hz. The sextic dis- 
tortion contribution is negligible. 

The Stark energy is given by: 

T o  second order in 8 ,  the function F depends only 
on the quantum numbers and can be deduced from 
Gordy and Cook (16). In general, however, F will 
include all the necessary higher order terms and will 

61f (KI = 1 and mJ = 0, K is not a good quantum number 
for any 8 or B because of the K-doubling term in HIIPF which 
can be obtained from [IE] of Table IV in ref. 14. See also 
[A61 in the Appendix here. For this special case, the high-field 
states are not IK = + I, nz, = 0) and I - 1,0), but rather 
( 1 / ~ ) { ( + 1 , 0 )  + I - 1,0)}. The treatment of the avoided 
crossings can be modified to take this complication into 
account. The major conclusions are similar, but some of the 
detailed arguments are different. However, because none o t the  
anticrossings studied experimentally in OPF, involve states of 
this type, the necessary modifications are not presented. 

be a function of p&/Bo as well. The dipole constants 
po, p,, and p, in [ l ]  can be related to the distortion- 
dipole coefficients OapY defined by Watson et al. (4)7 

[5a] po = pZ(e) - OyYz 

[5b] p, = Ozyy + 20:' 
[5c] p, = OZZZ - (OzYY + 2OYYZ) 

Here pz(" is the equilibrium electric dipole moment. 
Effects due to the anisotropy (mil - crl) in the 
polarizability can be neglected. 

The Zeeman energy can be written: 

[61 E, = -(I - ~ P ) ~ P ~ P F N B  

(1 - G F ~ F ~ F P N B  

- [g, + (gI1 - g,)K21J(J + l)lm,p,B 

For nucleus h = P or  F, g, and o, are the g-factor 
and average magnetic shielding, respectively. g l l  and 
g, are, respectively, the molecular g-factor for 
rotation parallel and perpendicular to the symmetry 
axis. The anisotropies in the shielding and the terms 
quadratic in B are negligible here. 

The hyperfine energy EHyp is given in [2] of Meerts 
et al. (9). The same notation is used here. The spin 
rotation constants that enter are clP, cIIP, cLF, and 
cllF. In this case, the subscript I means an average 
is to be taken about the x and y axes. The spin-spin 
constants that enter EHyp are dFF and dPF for the 
fluorine-fluorine and fluorine-phosphorus inter- 
actions, respectively. These are defined in [A8]. 

The condition that B > 2 mT as assumed in setting 
up the high-field representation allows us to neglect 
two types of off-diagonal elements due to H ~ ~ ~ ~ . ~  TO 
abbreviate the notation, these are represented here by 
DI,,IPF(~L), where KL is the algebraically lower of 
the two K values. The first type arises from terms for 
which AJ = AK = Am, = 0 and Amp = -AmF = 
+ 1 (see [4] in Table IV of Wofsy et al. (14)). These 
terms DoPF are proportional to dPF. They connect 
levels degenerate with respect to HsT. For B = 0, 
the diagonal terms only in HHyp are available to split 
the levels. A detailed analysis of the hyperfine 
problem is then required to see if m, and nzp are good 
quantum numbers. However, the diagonal elements 
(Hz) will separate these levels; for B > 2 mT, the 
mixing due to DoPF can be neglected. 

'The coordinate system used in ref. 4 is not the same as that 
used here and in several other works, e.g., ref. 14, involving 
nuclear hyperfine structure. T o  convert [5] and [14] to  the 
coordinate system in ref. 4, the labels on the O's and r must 
be changed as follows: z + 5, y + 5, and x + q. A similar 
transformation is required to convert to the coordinate system 
of ref. 2. 



154 CAN. J .  PHYS. VOL. 59. 1981 

The second type of troublesome HIIPF matrix 
element arises from K-doubling terms for which 
A J =  0,AK = f 2,Am, = T 2 ,  Am, = + _ I ,  Am, = 
f 1 (see [A61 here and [5E] in Table IV of ref. 14). 
These terms DzPF are proportional to  +(dXxPF - 
4,'") as defined in [As]. For  (K,i?zj) = ( f  1,+ 1) or 
(+ 1, T l) ,  the levels connected by DlPF are degener- 
ate with respect to both HsT and the diagonal terms 
in HHyp. As a result, the entire representation breaks 
down for the connected levels if B = 0. Again (Hz) 
lifts the degeneracy and, for B 2 2 mT, the mixing 
due to DzPF can be neglected. If K # ) 1 or nz, 
# + l ,  the levels mixed by DlPF have different 
values of (HsT) and the matrix elements have 
no significant effect. There are K-doubling terms (14) 
due to the fluorine spin-rotation interaction arising 
from $(c,,~ - cyyF), but these cannot couple in, = 
f 1 to m,' = T 1 and so do not connect degenerate 
levels even when B = 0. Thus in a conventional mber 
problem in large electric  field^,^ only the one K- 
doubling term, namely D,',, connects levels degener- 
ate in HsT and its effects can be reduced to  a second- 
order perturbation correction by applying a small 
magnetic field. The two terms DoPF and DlPF, will be 
discussed further when the anticrossings are treated. 

B. The Two Level Problenz 
Each anticrossing system such as that illustrated 

in Fig. 1 involves two groups of levels, A and B. The 
letters are selected so that A has the higher energy. 
Each group is labelled by its (J,K,in,) for & << 8,. 
Because (ERoT + EST) is the same for (J,K,nz,) as 
for (J, - K, - i ) ~ ~ ) ,  this group label is "sign doubled," 
e.g., (2,f 2,f 2), except when K = m, = 0. Each 
level within a group has its own m, and m,, as well 
as a specific sign (upper or lower) in the group label. 
The anticrossing system is specified by the group 
labels for A and B. 

In spite of the multiplicity of levels within each 
group, it is assumed in this section that the anti- 
crossing system can be treated as a series of in- 
dependent problems, each involving only two levels, 
one from A and one from B. In later sections, the 
two level assumption will be discussed in detail. 

The high-field basis functions used to calculate the 
two-dimensional Hamiltonian matrix are represented 
by la) and IP). The high-field energies calculated 
as described in Sect. 2A are E, and Ep. The sets of 
high-field quantum numbers cl and P are selected so 
that E, > Ep for & < 8,. Thus, far below &,, cl and 
p specify single levels in groups A and B, respectively 
(see Fig. I). 

In this truncated basis, the effective Hamiltonian 
matrix is 

The eigenfunctions are referred to as la) and Ib) 
corresponding to eigenvalues and Eb, respectively, 
where Ea > E,. Clearly a is a single level in group A 
and b is its partner in group B. The tildes are intro- 
duced to  indicate explicitly the distinction between 
the eigenvalues, which are the energies with the 
coupling q turned on, and the diagonal matrix 
elements, which are the energies with q turned off. 

The physical properties of la) and Ib) are inter- 
changed as & is increased through &,-, as can be seen 
in Fig. 1, for example. Well below 8,-, la) behaves 
as almost pure Icl) = IJ = 2, K = f 2, nz, = +2)  
and has a negative Stark effect, while Ib) behaves 
as almost pure IP) = IJ = 2, K = T l ,  m, = +2) 
and has a positive Stark effect. Well above 8,-, the 
two Stark effects have been interchanged and the 
K values have been switched: la) + I P) = IK = 
T l )  and Ib)-+lcl) = I K =  f 2 ) .  At & = &,, la) 
is an equal mixture of Icl) and I P); (b) is alsocom- 
pletely mixed, but is, as always, orthogonal to la). 

The transition frequency between the two inter- 
acting levels is 

[8] v = [(E, - Ep)l  + 41q I2l1/' 
The difference in the diagonal elements can be 
written 

where each A is the indicated difference in the high- 
field energies. The difference A, introduced in Sect. 1 
equals the field-independent terms (ARoT + A,,,,). 
The crossing field is defined by the condition 

It is often convenient to approximate [8] by 

where s, = (i3AsT/a&) evaluated a t  & = 8,. This 
approximation is valid for the interval in & about 8, 
for which the derivative s can be considered to be 
constant. The value of s, can be calculated accurately 
from the known value of p and even a very approx- 
imate measurement of 8,. For the typical q en- 
countered here, [lo] can be used out to values of 
v >> Iql. If 1111 is negligible in [lo], then v becomes 
a linear function of &: 

The best way of measuring &, and q is to follow v 
right through the anticrossing region. The values 
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obtained will be uncorrelated. &, will be determined & -+ 0. This is referred to as the nori?lal spectrum. If 
by measurements in the linear region where v >> lq/ & is fixed at a value which is a similar increment 
and lql will be determined by measurements near &, above &,, the order of the lines is reversed, but the 
where v reaches its minimum value v, = 21ql. In spacings are preserved. This is referred to as the 
many cases, however, this "right-through" method inverted spectrum. In order to deduce the form of 
is not practical and only a crude estimate or upper these spectra, the selection rules, the coupling q, and 
limit for IqJ can be obtained. In these cases, an the crossing field 8, must be calculated. 
uncorrelated value of 8, can be determined by first 
establishing the range in & for which [ l l ]  is valid 
and then making a single measurement in this range. 
This "one-sided" method, of course, uses the known 
value of s,. Alternatively, v is measured at a field 
far enough below &, that I av/ a& I is a sizable fraction 
of Is,l A second measurement is then made at the 
same frequency but with & above 8,. As long as the 
two frequencies in this "above/below" method are 
approximately equal, &, can be found by linear 
interpolation without using s, or Iq 1. 

In order to induce transitions between la) and 
Ib), an oscillating electric field of amplitude &,, is 
applied. Since Am, = 0, &,, is applied parallel to 8. 
The transition operator V = -pegRF  acts through 
the normal moment and the mixing of the high-field 
states. The magnitude of the transition matrix 
element is given by 

This result applies right through the crossing region, 
in spite of the fact that it is expressed in terms of the 
limiting high-field quantum numbers. In order to 
make the transition probability unity for a beam of 
velocity v ,  I(al V/b)l = hv/2L, where L is the 
length of the transition region (17, 18). For the Stark 
crossing shown in Fig. 1 and lq/vl = the 
optimum &,, is 4.7 V/cm, a value which is easily 
attained, particularly at low frequencies 5 10 MHz. 

Under the two level assumption, each anticrossing 
system (J,K,I?z,") * ( J ~ K ~ ~ , ~ )  will yield at each & 
near its 8, a spectrum consisting of a series of lines, 
one for each pair of interacting levels. Thus there 
are two lines for each (mpa, mFa) H (mpP, mFP), one 
for each sign in the sign-doubled group level. The 
lines in this series will come at different frequencies 
because &, will depend on the sign choice and on the 
values of m, and m, through A, and AH,,. If & is 
fixed far enough below 8, that [ l l ]  applies for all 
members of the series, then, because s, is the same 
for all members, the lines fall in the same order and 
with the same separation as they would in the limit 

C. Stark Anticrossings 
The mixing in this case between the high field 

states [a) and I p) is done by the Stark effect due to  
pD:qsT = (al(- p,'&)/P) where p,' is the space- 
fixed Z component of the distortion dipole operator 
given in [8] of ref. 2. For qST to be non-zero, la) 
and ID) must satisfy the selection rules (2) AJ = 
(J, - Jp )  = 0, +1 ;  AK = (K, - Kp) = +3. The 
K-selection rule implies that AIF = 0; the symmetries 
of the rotational and nuclear spin parts of the wave 
function are individually conserved. Because the 
Stark operator does not affect the nuclear spin 
variables, Am, = Am, = 0. Since Am, = 0 for any 
anticrossing, it follows that Am, = 0 as well. For 
(a = J,K + 3,1?lJ,mp,mF)- (P = J,K,mJ,mp,nlF) 

[I31 qsTQ(J,K,mJ) = +ipD&[mJIJ(J + 1)1 
x [(J - K)(J - K - 1)(J - K - 2) 

x ( J  + K + 1)(J + K + 2)(J + K + 3)11/' 

The distortion dipole moment is defined7 by (2, 3): 

where @: and OROT are the vibrational and rota- 
tional terms, respectively. @,,, can be related to the 
centrifugal distortion constant ryYyZ: 

[I51 qsrP(J,K,m,) = + b D &  

x [(J2 - mJ2)/J2(4J2 - 1)]1/2 

x [ ( J  - K)(J - K - 1)(J - K - 2) 

x ( J  - K - 3)(J + K + 1)(J + K + 2)]'12 

A similar expression can be derived for q sTR(~ ,~ ,nzJ )  
for the crossing ( J  + l,K + 3,tn,,mP,mF) +-+ 

(J,K,m,,t?zp,m~). 
In order for the anticrossing /a) H IP) to be 

detected by an mber spectrometer, the states la) 

%ince by definition E, > ED for & << &c, it has been 
assumed here implicitly that E(J1,K + 3,mJ) > E(J ,K , ITI~)  for 
& << Ec. If this assumption is incorrect, the identifications of 
a and [3 must be interchanged and i must be replaced by i*. 
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and IP) must satisfy conditions imposed by the 
focussing properties of the quadrupole deflection 
fields. Since E, > Ep for 8 < &,, these conditions 
are met for the standard "flop-out" quadrupole 
configuration (17, 19) if IP) is a focussed state 
(aEp/a& > 0) and la) is defocussed (aE,/a& < 0) 
or poorly focussed (aE,/ad > 0, but small). 

In practice, there are three different cases in which 
these conditions are met. In case I, I p) and la) have, 
respectively, positive and negative linear Starkeffects. 
This requires that (KptnJP) and (K,mJa) have opposite 
signs. Since AmJ = 0, K must change sign in the 
transition. This can happen only for (K, = f 2) o 
(Kp = T 1). Case I can occur in oblate and prolate 
tops for both AJ = 0 and f 1. In case 11, I P) and la) 
have, respectively, positive quadratic and negative 
linear Stark effects. This can happen only for Kp = 0 
and Ka = +3. Case I1 can occur in a prolate rotor 
for AJ = 0 and 1 1 ,  but in an oblate rotor only for 
AJ = f I. In case 111, I p) and la) have, respectively, 
positive linear and negative quadratic Stark effects. 
Here Kp = f 3 and K, = 0. Case I11 can occur in an 
oblate top for AJ = 0 and + 1, but in a prolate top 
only for AJ = f I. Thus Stark crossings can be 
detected directly only for K = f 2 ++ T 1 and 
K = f 3 o 0.' Other changes in K can be detected, 
but generally require significant additional innova- 
tion, such as the introduction of double resonance. 

In considering the feasibility of an anticrossing 
experiment, one of the first questions that must be 
answered is whether the lowest 8, for the molecule 
can be attained in the laboratory. An approximate 
value of 8, can be obtained from [9] by taking into 
account only the rigid rotor part of A,,, along with 
the linear terms in As,. Both AHyp and Az are 
neglected. For (J,K + 3,mJ) o (J,K,nzJ) in a prolate 
top, 

[161 e c =  h(Ao - Bo)(2K + 3) J ( J  + 1) 
p J 

This equation applies to an oblate rotor if (A, - B ,) 
is replaced by (B, - C,). Many anticrossings of this 
type with different J and mJ can occur for fields of 
the same order of magnitude. The lowest set of 8, 
values arises for K = f 2 o T 1, with the second 
lowest set coming from K = f 3 o 0. Some overlap 
exists between the field regions for the different sets. 
Fortunately, these two families are the very ones 
which meet the focussing conditions. The lowest 8, 
for a (AJ = 0) anticrossing system arises for (J,K,mJ) 
= (2, 5 2 ,  +2)* ( 2 , T l , f  2). 

For AJ = T 1 in a prolate top, the lowest crossing 

gWhen a crossing is referred to without specifying which 
level is la) and which is I p), the quantum number(s) for la) 
will be given first. 

fields occur for AK = f 3 .  For ( J  - 1 ,K + 3,mJ) o 
(J,K,m,), 

Note that IK + 31 I (J - 1). In order for 8, to be 
attainable here, there is usually a nearly complete 
cancellation between two large terms in A,,,, one in 
(A, - B,) and the other in B,. As a result, 8, is low 
only for one or two specific J,. This cancellation takes 
place if A,/B, is close to (25 + 6K + 9)/(6K + 9). 
For example, if A,/B, = 1113, J, = 4,, is degener- 
ate with 3,, and 8, -+ 0. Similar results apply to the 
oblate rotor, except that the lowest values of 8, occur 
for AJ = f 1, AK = +3. 

T o  predict the shape and average frequency of the 
normal spectrum of an anticrossing system for given 
d and B, the value of 6, for each interacting pair in 
the system must be calculated in full. All the Stark 
anticrossings investigated to date are of the type 
(J,K, = f2,mJ) o (J,Kp = T l,mJ). The discussion 
here will be confined to this case, but it can be 
extended to other anticrossings in a straightforward 
manner. In order to obtain 8, from [9], the dipole 
moment is treated in AsT as a constant equal to the 
value pr for an allowed transition such as (Jr,Kr,mJr 
= T 1 3 0) which has been selected as reference. 
The effect of the variation of y with J and K is 
absorbed into A,,, to form an apparent AROTA. The 
only significant difference between ARoTA and ARoT 
is the contribution of pJ and y, entering through the 
linear Stark effect. The value of 8, is then given by: 

where 

[18b] ARoTA = 30 - 3J(J + 1)b 

[18c] a = (A, - Bo)[l + &] - 5D, 

[Isdl = D~~ + - B ~ ) ~ ~ / ~ ~  

[18el & = J J J r  + ~)(PJ /P , )  + (Kr2 - ~)(P,/PO) 

[18fl Az = - ~ , ) P N B ~ J I J ( J  + 1) 

[18gl = 3(cllP - clP)mPmJ/J(J + 
+ 3(cllF - c l F ) m F m J / ~ ( ~  + 1) 
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In these equations, m, will be positive for K, = +2  
and negative for K, = -2. The function F super- 
ficially has the form of the second order Stark effect 
and can be so interpreted in qualitative work. How- 
ever, as indicated in Sect. 2A, F includes all the 
higher order terms required by the experimental 
accuracy; one must be careful not to absorb any of 
these terms into ARoTA. 

The essential features of the shape of the normal 
spectrum can be determined directly from the right- 
hand side of [18] because the coupling q is the same 
for each interacting pair in the anticrossing system. 
The spectrum will consist of two magnetic com- 
ponents whose g-factors are equal in magnitude and 
opposite in sign. For positive (gll - g,), the high 
and low frequency components will correspond to 
- lm,l and + Im,l respectively. Each component has 
the same fine structure due to A,,,. This is symmetric 
about the (AHyp = 0) position. For the OPF, 
coupling constants given in Table 1 of ref. 8 and the 
full width at half-height of the instrumental line 
shape Av of 18 kHz, this fine structure in the in- 
dividual components cannot be resolved. The 
splitting 21A,1 between components is symmetric 
about the (B = 0) position and can be resolved at 
the highest B. However, for B 5 0.1 T, the splitting 
cannot be resolved. In this case, the spectrum of the 
entire anticrossing system will consist of a single line 
symmetric about the (Az + A,,, = 0) position. 

The frequency of this single line at given & can be 
calculated from [l 11 using 8, obtained from [18a] 
with only ARoTA taken into account on the right-hand 
side. It follows then that 8, for a Stark anticrossing 
system is independent of magnetic and hyperfine 
effects. This type of anticrossing is consequently 
ideally suited to precision studies of ERoT and EST. 
By measuring ARoTA for a series of different J ,  the 
two constants a and b can be determined. 

The accuracy possible in measuring A,,,* must be 
given careful consideration because Ib/al is generally 
very small, -5 x lop6  in OPF,. The anticrossing 
frequencies can usually be measured to sufficient 
accuracy that the error is dominated by the con- 
tributions from p, and the field calibration. Since & 
is the ratio of the voltage V applied across the C-field 
plates to their separation cl, ARoTA can be expressed 
as a function of the crossing voltage Vc multiplied 
by (p,/d). By using conventional mber spectroscopy 
to study the reference allowed transition, (p,/d) can 
be reduced to the ratio of a frequency to a second 
voltage measurement multiplied by a frequency 
ratio (see Sect. 3). Since typically the frequency 
errors can all be made negligible, the uncertainty in 
ARoTA is determined by the total error in a single 
voltage ratio. The fractional error in this ratio is 
limited to -2 x by the absolute long term 

stability of the voltage source. Thus a can be obtained 
to -0.002z. If p, and d are measured separately 
using the most accurate means possible, this error 
would be over twice as large. However, bJ(J + 1) is 
still the order of the error in a, so that a determina- 
tion of b to good accuracy, e.g., l z ,  can generally 
not be made by a series of independent measurements 
for the comparatively low J's accessible. 

To overcome this difficulty, relative measurements 
are made. Two anticrossing systems with different J 
but nearly equal Ec are selected and d is set at a value 
such that [ l l ]  applies to all lines in each spectrum. 
By observing both spectra in the same field, the 
difference in the two values of ARoTA is obtained to 
an accuracy determined by the short term stability of 
the voltage source, namely 2 x If, in addition, 
the two anticrossing systems have the same linear 
coefficient in A,,, then the difference in the two AsT 
depends only on the quadratic (and higher) con- 
tributions and the difference in the two ARoTA will 
depend only on the term in b. Thus the fractional 
contribution due to b is greatly increased and 
accuracy - 1 z  can be obtained. Two such anti- 
crossings are ( J  = 2,mJ = f l,K = +2  o T 1) and 
( J  = 5,mJ = f 5,K = +2  o T l ) .  Theeffect offield 
inhomogeneities on the accuracy is discussed in 
Sect. 3. 

The separation of b into its two terms in [I81 is 
generally not difficult because D,, can usually be 
obtained to sufficient accuracy by conventional 
mm-wave spectroscopy. This yields a value for p,. 
The separation of a in [18] is somewhat more 
difficult. Three independent pieces of information 
are needed to obtain (A, - B,), pK, and DK. If D, 
is available from the distortion moment spectrum, 
as is the case for OPF, (1 l), then relative measure- 
ments involving the (K = f 2 o T 1) series and the 
(K = f 3 o 0) series of anticrossings will provide 
the remaining two constants. Otherwise, a third 
series of anticrossings is necessary. However, both 
the term in p, and that in D, are typically 5 2  x 

of (A, - B,), leading to an absolute contribu- 
tion which is just the order of the absolute experi- 
mental error in a. As a result, the final accuracy in 
(A, - B,) is generally not seriously degraded if a 
separation of a into its different terms is not possible. 

The entire analysis to this point has been based 
on the two-level assumption. Because of the high 
precision required for many of the applications, it is 
necessary to show in some detail that this assumption 
is valid. The system A - (J,K, = + 2,mJU = +2) tt 
B = (J,Kp = T l,mJP = f 2) is selected as an ex- 
ample. There are eight levels in group A and eight 
in group B. The states with m, = + 2 cannot couple 
to those with m, = -2 because no interaction 
available can satisfy a selection rule with IAmJI > 2. 
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Each group of eight levels then splits into two sub- 
groups of four. We consider here only the levels with 
mJ = + 2 .  The levels with mJ = - 2  can be treated 
by identical arguments. Because m, is a good quan- 
tum number, the four levels in B with (J,KP = 
- l ,mJP = + 2 )  break up into three blocks, one for 
each possible value of m, : (nzJP - 1 )  = + 1 ,  mJP = 
2, and (mJP + 1 )  = 3. For m, = + I, there is a unique 
set of values possible for the nuclear magnetic quan- 
tum numbers : mPP = - 1 ,, mFP = -+. This can cou- 
ple with only one level in group A, namely (J,Ka = 
+ 2,mJa = +2,mpa = -+,mFa = -+), and a 2 x 2 
problem results. Similarly, for m, = + 3 ,  there is a 
single combination (mp,nzF) available in B and in 
A, so that the two-level assumption is again valid. 

However, for m, = nz, = 2, there are two possible 
combinations (mp,mF) available in P : P I  + (- +, + 4) 
and P2 + (+),-4). These two can interact with 
each other by means of the phosphorus-fluorine 
spin-spin terms D o P F ( - I )  introduced in Sect. 2A. 
There is a similar situation in A:  a1 + (- +, + +) and 
a2 + (++,-+) interact through D O P F ( + 2 ) .  The 
anticrossing problem then involves a 4 x 4 Hamil- 
tonian matrix of the form shown in Table 2. If D~~~ 
could be neglected, this (4 x 4 )  matrix would reduce 
to two independent (2  x 2) blocks. 

In order for this reduction to occur, two ratios 
must be negligible: IDoPF(- I ) / [ E P l  - EpZ]l and 
I DoPF(+  2 ) / [ E a 1  - E,,] 1 .  For B 2 2 mT, the nuclear 
Zeeman contribution to the energy denominators 
will generally make both of these ratios very small. 
For lower values of B, a detailed calculation must 
be done whose results depend on the specific 
molecule's coupling constants. In OPF,, the energy 
denominators are large compared to IDoPFI a11 the 
way down to B = 0 ,  where the denominators arise 
primarily from HIJP and HIJF. AS a result, the 
(m, = + 2 )  case can be broken up into two separate 
two dimensional problems. Furthermore, it can be 
shown that the (Az + AH,,) contribution to 8, in 
[18] is negligible even for B < 2 mT. 

From these arguments, it is clear that the two level 
analysis presented can be applied to any Stark anti- 
crossing system with lmJl 2 2. For lmJl = 1 ,  the 
situation is more complicated because the separation 
of +mJ from -mJ  does not occur in such a simple 
manner. In fact, for lmJl = 1 ,  the system is not truly 
Stark in nature, but is a hybrid of Stark and hyperfine 
mixing. Such systems are discussed in Sect. 2 0 .  

D. Hyperfine Anticrossings 
For the hyperfine avoided crossings, the two-level 

assumption will again be adopted initially and sub- 
sequently examined in depth. The mixing between 
the high field states la)  and I P) by H H y p  has been 
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analysed in detail. The matrix elements are given in 
the Appendix. The different interactions, the coupling 
constants, and the selection rules are summarized 
in Table 3. 

Since AK = + 1 and + 2  are allowed for the 
coupling q H y p ,  avoided crossings occur in which 
( K  = 3N)  o ( K  # 3N).  In such anticrossings, 
d l F  = f 1 ; the symmetries of both the rotational 
and nuclear spin parts of the wave function are 
individually broken. This breaking of the molecular 
symmetry by some of the interactions can be under- 
stood on simple physical grounds. The rotational 
magnetic field at the phosphorus clearly had C,, 
symmetry; this leads directly to the absence of 
(AK # 0 )  terms in H,,'. On the other hand, the 
rotational magnetic field seen by an individual 
fluorine nucleus clearly does not have C,, symmetry 
and is therefore able to produce (AK # 0 )  terms in 
HIJF. This rotational field is inhomogeneous across 
the fluorine nucleus, as it must be to change IF. 

Similar arguments can be made for HIIPF and 
HIIFF, with one notable difference. An operator of 
the form H , , ~ ~  with (AK = k 1 )  matrix elements 
can be formed according to group theory, but the 
coupling constant +(dyzFF + dZyFF) E 0 for the 
classical spin-spin mechanism because the three 
fluorine nuclei are all in a plane perpendicular to the 
z-axis. The forces involved in the electron-coupled 
spin-spin mechanism are not symmetric about this 
plane. These would produce a non-zero (AK = + 1 )  
term of the HIIFF form, but the coupling constant 
would be extremely small because the fluorine atoms 
are not directly bonded to each other. 

The two (AK = f 1 )  coupling constants enter con- 
ventional spectroscopy only in second-order per- 
turbation theory and consequently have not been 
measured for any symmetric top. For a rigid mole- 
cule, the (AK = + 2 )  constant 4(4,FF - dyyFF) is pro- 
portional to the (AK = 0 )  constant dFF (see [A8] )  and 
so can be determined by conventional mber experi- 
ments (9). All three (AK = f 2)  constants can have 
a K-doubling contribution to the energy for K = + 1 ,  
but the measurement of these terms is difficult and 
has been done only for very few molecules such as 
NH, (20). The classical spin-spin constants can, of 
course, be calculated from the molecular structure 
(see the Appendix). 

The focussing requirements for the hyperfine anti- 
crossings are very similar to those for the Stark 
anticrossings, with the same three cases possible. In  
case I, (KpmJP)  and (KamJa) can have opposite signs 
now only for mJ = f 1 o T 1 .  ,This can occur in 
oblate and prolate tops for both AJ = 0 and f 1 .  In 
case 11, Kp and/or mP must vanish and, in case 111, 
Ka and/or ma must vanish. Because of the many 
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TABLE 2. The Hamiltonian matrix with t t ~ ~  = t t ~ ~  for the Stark anticrossing problem 
(J,K = +2* -l,t?lJ = + 2 + +  +2)" 

"DoPr is the matrix element of Hr,PF. Since AK = 0, the argument in parentheses equals either K-value. 

TABLE 3.  The interactions, coupling constants, and selection rulesa for the hyperfine interactions 

Coupling constantb for: 
Inter- 
action A  J  Amj Amp AmF A K = O  A K =  t 1  AK = t 2  

:(cllp - c I p )  
HttPF 0 , + 1 , + 2  0 , ? 1 , + 2  O,+ 1 O , +  1 dPr  + ( c i , y  + ci,,.'") $(dXxP' - dyyPF)  
HITF 0 , _ + 1 , + 2  O , k 1 , ? 2  0  0 , + 1 , + 2  dF' 0  +(dxPF - dy,FF) 

OThe values from the Arn,. Arn,, and A I ~ F  columns must be selected so that Anr, = 0 
bSee the Appendn for def in~t~on  of the sprn-sprn constants In terms of molecular parameters and the resultrng numerrcal values for OPF, 
[c.k = f(2clk L,,&) where A = P or F. 

different selection rules, a complete breakdown of 
the different anticrossings detectable in these two 
cases is too lengthy to be given here, but the problem 
is straightforward. 

The detailed form of the normal spectrum of a 
hyperfine anticrossing system is very similar to  that 
for Stark anticrossings, but has several important 
differences, many of which can be traced to the fact 
that the magnetic quantum numbers now can 
change. In this discussion, it is very helpful to  use a 
specific system as an example. The anticrossing 
systems studied here in OPF, are listed in Table 4. 
In each case, the coupling constants capable of pro- 
viding the required mixing are given. The example 
chosen is (1, + 1, f 1) tt (1,0,0). Both +(cyzF + czyF) 
and -$(dyzPF + dZyPF) fit selection rules (i) Am, = f_ 1, 
Am, = 0, Am, = T 1, but only I,(dyzPF + dZyPF) fits 
selection rules (ii) Am, = + 1, Am, = T 1, Am, =. 0. 
The analogue of [18] forms the basis for calculating 
the spectrum. The result is not given here, but can 
be obtained by the reader from Sect. 2A. 

In describing the essential features of the resulting 
spectrum, it is initially assumed that only selection 
rules (ii) are operative. The normal spectrum will 
then consist of one pair of magnetic components. 
Unlike the Stark case, each line within a given com- 
ponent will have a different q because the mixing 
depends now on (mp,mF). In spite of this, the two 
components have the same fine structure: for each 
line in the first component there is a corresponding 
line in the second with the same q and the same shift 
due to  AHyp. The distribution of frequencies within 

each component is not symmetric about the (AHyp = 
0) position. The fine structure cannot be resolved in 
OPF, with the current instrumental line width Av. 

For  any specific line within a magnetic component 
of a hyperfine system with A J  = (Ja - Jp )  = 0, the 
effective g-factor, defined as - (aA,/aB) in nuclear 
magnetons, is given by: 

[I91 geff = + (1 - o,)g,Am, + (1 - ~ F ) ~ F A ~ F  

+ g1An.l~ + - g,)[Ka2mJa 
- K ~ ' ~ , ~ ] / J ( J  + 1 ) 

For the selection rules now being considered in the 
example, (Am, = + 1, Am, = - 1, Am, = 0) will 
produce the high-frequency component, since g, is 
positive. A sign reversal for all three Am's will 
produce the low-frequency component. The two 
g-factors have the same magnitudes but opposite 
signs. Because of the large nuclear contribution to  
g,,,, the two components are easily resolved even for 
B as small as 2 mT. I t  is often convenient t o  approx- 
imate geff by these dominant nuclear terms: 

[201 g = +gpAmp + gFAmF 

For  both members of this particular magnetic pair, 
Igl = g,. The specification of Igl in terms of g, and 
g, provides a convenient method of giving the 
selection rules on Am, and AH?,. 

In studying this spectrum, the variation of 
[ ( a ]  Vlb) I with v indicated in [12] must be taken into 
account. If bRF/v is held approximately constant for 
both components and all B, then the spectrum takes 
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TABLE 4. The hyperfine anticrossings observed: the mixing mechanisms and splitting patterns 

Observedb 
Coupling relative 
constant intensity per 

J K. - KO I I I , ~  - tnJ" allowed El " 12 component 

.. - 
I....-&* 2 1.5' 

2 + I t t o  f 2 - 0  $(d,,zPF + ~ 4 , ~ ~ )  gp  + gy 2  8 
2 i 2 - 0  - +2*0  +(r/xxF'? - dYTF) 2gr 2 25 

( . . p ' ?  - J p ‘ ?  gp + gr 2 25 
2" * 2 - + l  H +(dSTF + r/=yPF) gp + g,: I 140 
3-2- & 1  + l * + l  +(d,,"' + r/:yPF) &?P + g~ 1 35b 
3 i 3 -  + 2  i l  * T I  +(dSZPF + CI;yPF) g,  + gr. 2 4 

OAlI the predicted magnetic components were observed experimentally except the two marked with an  asterisk. 
bFor comparison, on this intensity scale, the pure Stark component o f  the (J = 3,K = i 2  <-, T ~ , I I I ,  = 2 I *- 2 I )  

hybrid system has strength 250. 
'These intensities were calculated using the !I ratios from [he intensities observed fo r  Igl = gF 
dThis refers only to the ( I ~ T  = 0) hyperfine satellites in the hybrid Stark-hyperfine system. 

its simplest form. The shapes of the two components 
are identical and do not change with B. Their shifts 
from their (AHyp = 0) positions are similarly equal 
and independent of B. The splitting is symmetric 
about the (B = 0) position and varies according to 
a g-factor whose magnitude is 12geff/. 

In the actual spectrum, selection rules (i) are also 
operative. This set of selection rules has 1i1 = g,. 
The resulting second pair of magnetic components 
has the same general characteristics as the first, but 
with its own optimum &,, and fine structure, in 
addition to the different g-factor. Because two 
independent mechanisms satisfy selection rules (i), 
there can be interference effects between the two 
corresponding sets of matrix elements. 

The gp  pair and the g, pair will, in general, have 
different intensities. The variation of q with (mp,mF) 
within each component makes it very difficult to 
make a definitive statement regarding the relative 
intensities. However, it is expected that the inten- 
sities will be closely proportional to the number of 
contributing states, i.e., to the number n of (mp,mF) 
combinations contributing to each component. Here 
n = 2 for gp and 11 = 3 for g,. Thus, the g, pair 
should be stronger by a factor of 1.5. For each 
hyperfine system studied, the values of I gl and n are 
given in Table 4 for the various magnetic pairs 
possible. 

For the purpose of extracting information about 
the molecule, the hyperfine anticrossings have 
several disadvantages. First, even for the very small 

values of B 2 2 mT needed to establish the high 
field representation for E, and Ep as shown in Sect. 
2A,  the spectrum is separated into its magnetic com- 
ponents with the resulting division in intensity. 
Second, the shape of these components depends on 
&,, because the individual lines have different qHyp. 
As a result, the type of lineshape analysis used to 
unravel the hyperfine structure in the conventional 
spectrum (9) cannot be applied here to obtain the 
hyperfine constants in AHyp, except in special cases. 
Finally, each magnetic component has an rf depen- 
dent shift due to AHyp. Consequently, the kind of 
precision studies of ERoT and EST which are done 
with the Stark anticrossings cannot be carried out 
here. 

In spite of these difficulties, the hyperfine anti- 
crossings can yield a lot of valuable information. 
First, by determining the values of Igl for the 
magnetic components which appear for each system, 
the selection rules predicted theoretically can be 
checked experimentally. Second, if Jql is large enough 
that its contribution to [lo] can be measured, then 
accurate values can be obtained for the coupling 
constant involved in q .  If spectra can only be 
observed where [ l l ]  holds, then measurement of the 
&,, needed to maximize the component intensity 
can, in favorable cases, yield an estimate of this 
coupling constant. Third, for some particular anti- 
crossing, the fine structure of the magnetic com- 
ponents can be analysed in a simple way and AHyp 
measured. For example, this would be the case if 
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TABLE 5. The Hamiltonian matrix with nlr = 0 for the Stark-hyperfine anticrossing problem 
(J,K = + 2 tt T 1,n1, = + 1 o + 1) hybrid with (J,K = + 2 o + l,mJ = f 1 o T 1)" 

- l ,+ l , -+ , -4  ED I rlsr DZPF(- I)" DlP'(- 2) 
+ 2  + 1  -.I. -1 

3 9 2 ,  i qsr* E. I DlP'(+ 1) 0 
+ I , - I , + + , + +  DzPF(-1) DLPF(+ I)* E P ~  llsr 
- - + +  DLw(-2)" O qsr" Em 2 

aDlar;l"(KL) is the matrix element of  H,,", where K L  is the algebraically lower of the two K-values. Explicit 
expressions are given in the Appendix. 

the components consisted of single lines. Fourth, it 
is not difficult to measure 12g,,,l to sufficient accuracy 
that the terms in (g,, - g,) and/or g, are significant 
in [19]. Since the signs of g, and gF are known, the 
signs of the molecular g-factors can be obtained. 

In spite of the coinplexity of the hyperfine anti- 
crossings, their most important application is 
perhaps still the determination of (A, - B,). In the 
approximation used for [16], the crossing field for 
the hyperfine system (1, + 1, f 1) ++ (1,0,0) in a 
prolate rotor is given by 

[211 8, = 12/44, - B0)lpl 

This equation applies to the system (1,0,f 1) ++ 

(1, + 1, T 1) in an oblate rotor if (A, - B,) is replaced 
by ( B ,  - C,). For both prolate and oblate tops, this 
is the lowest crossing field possible and, in many 
cases, is the only one accessible. 

Consider a typical experiment in which this one 
crossing field is measured for a prolate top with 
(A, - B,) = 5 GHz and p = 1 D, so that 8, = 20 
kV/cm. For this anticrossing, 

In the final analysis for A,,,, assume that corrections 
are not made for the shifts due to AHyp nor for the 
(J,K) dependence of p. Furthermore, if B = 0, 
corrections are also omitted for the breakdown of 
the high-field representation for E, and Ep, and the 
failure of the two-level assumption. For a molecule 
without any quadrupolar terms in HHyp, the neglect 
of these various corrections will at most degrade the 
accuracy obtained for A,,, from 0.002% by a factor 
5 3 .  Even the neglect of D, in [22] will typically not 
reduce the accuracy in (A, - B,) below 0.01% or 
500 kHz. Thus, although the hyperfine anticrossings 
cannot be used for some of the most accurate 
applications of the Stark systems, the values obtained 
for ( A ,  - B,) are accurate enough for a wide 
variety of molecular studies. 

Because the Stark-hyperfine hybrid systems men- 
tioned in Sect. 2C have some unusual characteristics, 
and are very useful in the highest precision measure- 
ments, the form of the resulting normal spectrum 

will be considered in detail. These systems involve 
eight levels in A E (J,K, = +2,nzJa = - + 1) and 
eight levels in B = (J,Kp = T 1 ,nzJP = + 1). Although 
(A ++ B) appears at first glance to be a standard 
(AJ = 0) Stark anticrossing with K = f 2  ++ TI 
and nz, = f 1 ++ f 1, this is not the case. The 16 x 
16 Hamiltonian matrix factors into three 4 x 4 
blocks with m, = - 1,0, + 1 and two 2 x 2 blocks 
with in, = -2, +2. 

The form of the 4 x 4 block with nl, = 0 is shown 
in Table 5. For B 2 2 mT, the nuclear Zeeman con- 
tributions to the diagonal elements make JEp,  - 
EP21 large compared to IDIPF(- l)I, SO that the 
system breaks down into two parts, each of which 
can be treated with the two-level analysis: a Stark 
anticrossing (K = f 2 ++ T l,m, = f 1 ++ + 1) with 
Ial) ++ IP1) and la2) ++ IP2) corresponding to 
upper and lower signs, respectively; and a hyperfine 
anticrossing (K = +2  ++ f l,m, = f 1- 7 1 )  with 
lal) ++ IP2) and la2) ++ IP1) corresponding to 
upper and lower signs, respectively. A schematic 
energy level diagram is shown in Fig. 2. In the 
hyperfine case, the mixing arises from +(dyzPF + 
dzyPF) as can be seen from Table 3, and q is repre- 
sented by DIPF(K). For 200 mT 2 B 2 20 mT, the 
normal spectrum will consist of four lines, the two 
Starlc lines forming an unresolved doublet at the 
(B = 0) position and the two hyperfine lines forming 
a well-resolved magnetic pair with g-factors given 
in [19]. 

For (m, # O), the system is pure Stark in nature 
and there are no hyperfine anticrossings. The part 
of the 16 x 16 matrix with (m, # 0) is identical in 
form to the corresponding section of the matrix 
described in Sect. 2C for a Stark system. For 
example, the 4 x 4 block with m, = + 1 is the same 
as that shown in Table 2 for the Stark problem 
except that now m, = + l .  This occurs because 
+(dyzPF + dZyPF) cannot introduce any hyperfine 
mixing. Its selection rule Am, = f 2  can be met just 
as for m, = 0, but it is not possible in this case to  
satisfy the selection rule A[mp + mF] = T 2  implied 
by the requirement Am, = 0. Similarly, the 4 x 4 
block with m, = -1 has the structure shown in 
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FIG. 2. Schematic plot against & of the energies of the four 
interacting levels with (mT = 0) in a hybrid Stark-hypefine 
anticrossing. The magnetic field B is large enough that E ,Z  and 
ED, are linear with Q in the regions separating the hyperfine 
anticrossings, H I  and Hz, from the Stark anticrossings, S1 and 
S2, so that the four can be treated as separate two-level prob- 
lems. The four minimum separations v, have been exaggerated 
for clarity. bc(S1) is slightly lower than b c ( S z )  Such a plot 
would apply for any J 2 2. For ( J  = 3), [bc(H1) - bc(Hz)l 
was used to determine the absolute sign of the rotational 
g-factors. 

Table 2, but with m, = - 1. The two 2 x 2 blocks 
with m, = 1 2  are clearly simple two-level Stark 
anticrossings. 

The six anticrossings for m, = i 1 and i 2  com- 
bine with the two Stark anticrossings for m, = 0 to 
form a standard Stark system with all the general 
characteristics of the pure Stark spectra. The only 
difference is the presence of the hyperfine magnetic 
pair. The intensity of each of the hyperfine satellites 
is 118 that of the central Stark line. The mean Stark 
frequency is at the (Az + AHyp = 0) position (see 
Sect, 2C), while the mean hyperfine frequency is 
shifted from the (Az + A,,, = 0) position by AHyp. 
However, because each magnetic component is a 
single line, interpretation of this shift does not 
involve &,, and so does not face the difficulties 
mentioned above. 

To  establish that the two-level assumption is 
justified for the hyperfine and hybrid anticrossing 
systems studied, each case must be analysed just as 

was done for the Stark systems in Sect. 2C. The 
conclusions are similar. The two-level assumption is 
valid for B X 2 mT, but for smaller values of B the 
validity depends on the details. The errors that can 
be introduced in OPF, by using B < 2 mT do not 
significantly affect any of the applications made here. 
For the hybrid case, where the present requirements 
are much more stringent, the effect of using very 
small values of B has been checked experimentally 
(see Sect. 4). 

3. Experimental Considerations: the C-field 
The basic mber apparatus used in the current work 

has been described elsewhere (21). The seeded beam 
techniques used to obtain the low temperature 
(-6 K) required to concentrate the population in 
the low rotational states have been outlined in earlier 
reports (1, 9). Here the discussion will be confined 
to the characteristics and operation of the C-field. 
These are of particular importance in the anticrossing 
experiments because they have a direct bearing on 
the feasibility of observing the spectrum and on the 
accuracy of measuring the large Stark shifts pro- 
duced. 

The voltage applied to the C-field was taken from 
two sources, a Fluke #335A and a Fluke #332A, 
both of which were calibrated to 5 ppm. For mea- 
surements below 1100 V, the 332A was used to 
supply the voltage and the 33514 was used as a 
differential voltmeter to monitor the relative stability 
of the 332A. For measurements between 1100 and 
2100 V/cm, the two supplies were connected in 
series. 

The C-field itself was formed (21) from two 
optically flat quartz surfaces that were coated first 
with aluminum and then with gold. This surface is 
stable for & 2 3 kV/cm, but deteriorates irreversibly 
at higher fields, producing field inhomogeneities that 
are unacceptable. In order that the same transition 
region can be used to study (Am, = 0) spectra for 
the anticrossings and (Am, = k 1) spectra for 
calibration purposes, the coating procedure for one 
surface must leave a slit of low conductivity parallel 
to the beam line. Unfortunately, the slit increased 
the field inhomogeneities. To overcome this, the 
quartz plates were coated so as to provide two 
individual shorter transition regions. The o section 
was in the parallel plate configuration which can 
yield only (Am, = 0) spectra, but gives the more 
uniform field. The na section contained the slit. The 
o region was used for the anticrossings and both 
regions were used to calibrate ( p , / d ) .  

This calibration procedure involved the three 
different frequency measurements. The discussion in 
Sect. 2C following [18] is pertinent at this point. 
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First, the (Am, = 0) 1-doubling spectrum (22) of 
OCS in its first excited bending vibrational state 
(01'0) was taken on the o section to measure the 
ratio of the corresponding moment poCsE to d. Then, 
the (JK = 3,,,m, = f 1 + 0) multiplet was selected 
for OPF, as the reference. Both this spectrum and 
the same OCS spectrum were taken on the no 
section to give the ratio pr/pocsE. The product of 
the two ratios then gives (pr/d) in the form specified 
in Sect. 2C. (pr/d) = 2.936318(59) D/cm. A check 
with the (J, = 2,,,117, = f 1 + 0) multiplet as 
reference gave this same result, but with an error 
twice as large. The value of d itself was 0.63633 l(23) 
cm. These calibration numbers, of course, change 
each time the C-field is disturbed. In order to 
eliminate the effects of the sinall contact potentials 
that arise in mber spectroscopy, all calibration 
measurements were taken with both polarities and 
the results averaged. Of course, a similar procedure 
was followed in the anticrossing measurements 
themselves. 

One of the critical properties of the C-field is its 
homogeneity. This is illustrated by the typical normal 
spectrum shown in Fig. 3. The optimum &,, was 
used. This spectrum is very sensitive to variations in 

FIG. 3. Nort~ml spectrum for a typical Stark anticrossing 
taken for & < &, in a single sweep with a time constant of 2 s. 
The full width at half-height Av of 18 kHz is determined 
primarily by the field inhomogeneities. The Stark shift 
1AsT1 = 652 MHz, so that the fractional inhomogeneity is 
better than 3 x 

8 :  sc = 938.6 kHz/(V/cm). The observed full width 
Av at half-maximum was 18 kHz, whereas the line- 
width due to time-of-flight for an isolated line was 
7.0 kHz, as calculated (17, 18) from the length, 
L = 6.2 cm, of the transition region and the velocity, 
v = 550 m/s, measured (9). Part of the extra width 
may be due to AH,,, which produces a splitting 1 1 0  
kHz, where the uncertainty results primarily from 
the large error in (cIIP - cIP). However, there is a 
great deal of evidence that the lineshape is deter- 
mined primarily by field inhomogeneities. If the 
entire Av in Fig. 3 is assigned to variations in &, then 
since the magnitude of the Stark shift lAsT1 = 652 
MHz for this anticrossing, the inhomogeneity 
= /Av/ASTl = 2.8 x This is of the same order 
as the accuracy to which the separation d of the 
C-field plates can be adjusted to be constant by 
simple interferometric methods. 

Although the field inhomogeneities dominate the 
lineshape, these effects did not introduce any serious 
asymmetries. As a result, they did not appreciably 
degrade the accuracy of the final results from the 
Stark crossings. For the absolute measurements of 
ARoTA required to determine a in [IS], the error in 
the typical frequency measurement must be 5 (Av/4) 
in order that this error be negligible compared to the 
already existing limit of 1-2 x lop5  due to the long- 
term stability of the voltage source. The resulting 
requirement on the symmetry is easily met. For 
relative measurements of AROTA required to deter- 
mine b in 1181, the limit from the voltage source is 
the short term stability of 2 x At this level, 
the lineshape distortions can introduce significant 
errors in individual frequencies. However, only 
frequency differences need to be found. Because both 
spectra involved here always have the same s,, the 
asymmetry errors cancel to the required accuracy. 

In studies of the hyperfine anticrossings, the in- 
homogeneities have a much larger effect. Among 
other things, the large Av eliminates the possibility 
of resolving the fine structure due to AH,,. 

In general, the uniformity of & can be an important 
factor in determining the feasibility of measuring 
(A, - B,). In [21], the lowest crossing field available 
for any particular symmetric top under study is 
given. Let us consider a group of molecules with the 
same p but different (A, - B,) and ask which 
aspect(s) of the anticrossing technique limits the 
largest (A, - B,) that can be measured. If the 
population and focussing properties of state I P) 
provide enough molecules to produce a strong 
spectrum in an ideal C-field, then this upper limit to 
(A, - B,) is set by the line width Av of the real 
C-field due to its inhomogeneity. As (A, - B,) 
increases, ]AsT] will go up and Av will get larger at 
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least as quickly. The lowest frequency at which the 
anticrossing spectrum can be studied is 22Av. Thus 
as (A, - B,) increases, this minimum frequency 
will go up. The optimum E,, required will increase 
both directly as it would in a conventional mber 
experiment because the ratio of the inhomogeneous 
and homogeneous widths has gone up, and indirectly 
as indicated by [12] because v has gone up. Even- 
tually (A, - B,) will become so large that the value 
of &,, required cannot be generated. For the pre- 
sent C-field, the homogeneity requirements can be 
met for 8 5 3 kV/cm, so that (A, - B,) 5 750 
MHz for p = 1 D. However, with techniques currently 
available for the construction of C-fields, these re- 
quirements can be met for fields as large as 20 kV/ 
cm, so that (A, - B,) 5 5 GHz for p = 1 D. 

4. Results 
A. The Stark Crossing Fields 

A series of Stark anticrossings of the type (J,K, = 
+2,m,) o (J,KI, = T l,m,) were studied to obtain 
(A, - B,) and p,. For each anticrossing, the 
absolute crossing voltage Vc and the apparent rota- 
tional energy difference ARoTA defined in [18] are 
given in Table 6 along with the number N, of 
independent measurements made. For each case, at 
least one of the measurements was made by the 
abovelbelow method described in Sect. 3. 

All the data were taken in the earth's magnetic 
field. Because B was so small, the measurement of Vc 
obtained for each case with m, = + 1 represents the 
hybrid Stark-hyperfine value. However, by applying 
an external magnetic field 2 2 0  mT, it was shown 
that there is no significant difference from the Vc for 
the pure Stark system (see Sect. 20).  

The internal consistency of the data is very good. 
For many of the crossings, runs were taken a week 

TABLE 6. Absolute crossing voltages and apparent rotational 
energy differences for the Stark anticrossings (K = + 2 ++ 3 1) 

(or several weeks) apart, but the standard deviations 
fall generally between 2 and 6 kHz. For J = 2, the 
values of A,,,~ for the two different lmJl agree to 
within 2 kHz. For J = 3, the values of ARoTA for the 
three different InzJI agree to 4 kHz. For comparison, 
6.5 kHz is 0.001%. This indicates that the long term 
stability and reproducibility of the voltage supplies 
is a factor of 2-4 better than the upper limit of 
2 x listed in the manufacturer's specifications. 

The relative measurements made to determine 
directly differences in ARoTA are summarized in 
Table 7. Here (J,m,,,) and (J2m,,,) label the two 
systems in Table 6 that are being compared. The 
errors in [A,,,~(J,) - are dominated by 
the short term stability of the voltage source for the 
first three cases. For the case involving J = 8, the 
error is dominated by the uncertainty in finding the 
centre of the very weak line for this rather high J .  A 
spectrum for (J2 = 8) is shown in Fig. 4 along with 
one taken in the same field for (J, = 3). Table 7 also 
lists the values obtained for b using [IS]. 

A least-squares fit was made to the combined data 
on ARoTA in Tables 6 and 7 to obtain a and b. The 
absolute values of AROTA in Table 6 were taken to be 
internally consistent to 0.001% based on the per- 
formance of the voltage sources and so were assigned 
errors of 6.5 kHz for weighting purposes. It was 
found that a = 217 499.60(72) kHz and b = 
0.904(12) kHz; the errors shown are those given by 
the least-squares fit. For each J ,  the results given in 
Table 8 were obtained with [18] from the average 
value of A,,,~ for that J i n  Table 6. In the calculation, 
the known values of D,, and D, given in Table 1 
were used. The reference transition enters the 
calculation through E in [18e]. Since Jr = 3 and 
Kr = +2, as indicated in Sect. 3, E = 12(p,/po) + 
(p,/p,). In calculating (A, - B,), it was assumed 
that 1p,1 - Ip,( and that the term in p, could con- 
sequently be dropped. In Table 8, the values of 
(A, - B,) have a spread of less than 7 x as 
compared with the manufacturer's specification of 
2 x lo-' for the long term stability of the supplies. 

The final values of ( A ,  - B,) and p,, as calculated 
from the least-squares results for a and b, are given 

TABLE 7. Relative measurements for Stark crossings 
( K =  f 2 -  T l ) t o d e t e r m i n e p J a  

AROT*(JZ) - AROT~(JI)  I )  
J1 ~ J , I  Jz ~ J , Z  (kHz) (kHz) 

O N ,  = total number of measurements. 
T h e  error shown represents only the standard deviation for the N., + * -15.7(1.5) 0.874(83) 

different measurements. The absolute errors are -0.002z. In A,,,", this 3 + 2 5 + 5 -49.5(1.5) 0.917(28) 
is - 13 kHz. 

<To obtain 6c, Vc must be divided by d = 0.626331(23) cm. 2 + 1  5 t 5  -63.9(1.5) 0.887(21) 
dThese are hybrid Stark-hyperfine systems, but the results are given for 3 t 1 8 _+ 6 -163.3(3.0) 0.907(17) 

the pure Stark component (see Sect. 2D). 
'No standard deviation is given because N ,  = 1. Osee Sect. 2C and [IS] in particular for definitions of the symbols. 
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FIG. 4. Spectra for two different Stark anticrossings in the same electric field. The J = 8 curve is tlortiml and the J = 3 

curve is inverted. There is a break in the frequency axis; each section has its own frequency scale and intensity scale. The 
runs were taken in the earth's magnetic field. Relative measurements such as this were used to determine p,. 

in Table 1. The error in (A, - B,) is, of course, 
limited to 2 x lo-' by the long term characteristics 
of the voltage sources. Two other determinations of 
(A, - B,) are given in Table 1. The agreement is 
very satisfying, particularly with the distortion 
moment spectroscopy result. 

B. The Stark Minimum Separations 
For the Stark anticrossings (J,K, = $- 2,mJ = J )  o 

(J,KD = T l,mJ = J),  the minimum separation is 
given by (see [13]): 

For J 2 4, v, is large enough compared to Av that 
the transition frequency could be measured accur- 
ately right through the crossing. This was done for 
J = 4 and J = 6. A spectrum taken for J = 4 just 
below &, is shown in Fig. 5. For each J ,  the data 
were analysed with [lo] to obtain V ,  and lq 1 = v,/2. 
The quality of the fit was good in each case; the fit 
for J = 6 is illustrated in Fig. 6. For J = 4, v, = 
57.64(66) kHz and pD = 5.835(67) x l op6  D. For 
J = 6, v, = 181.14(65) kHz and pD = 5.858(20) x 
low6 D. The weighted average is given in Table 1. 
The agreement between the two values for pD shows 
that the J-dependence given in [23] is correct and 
confirms that the mixing is due to the distortion 

dipole mechanism. Measurements on a single anti- 
crossing cannot provide this information. 

On the basis of qualitative arguments (23), it is 
expected that the rotational contribution OR,, to p, 
in [14] will be dominant in heavy molecules such as 
OPF3 with large p, and small (A, - B,). The 
current measurement of I pD I makes it possible to test 
this argument for the first time. From the harmonic 
force field, it was found (10) that ryyyz' = (h4ryyyz/h) 
= 1.28 kHz.'' From this result and the parameters 
given in Table 1, 10R,,( = 5.50 x D, which 
differs by only 6% from JpDI. If one makes the 
reasonable assumption that pD and OR,, have the 
same sign, then indeed 10,,,1 >> 10,YY 1, as expected. 
However, some of the OmBY are of the same order of 
magnitude as OR,,. This can be deduced from the 
fact that I pJ I - 1 pD 1 (see Table 1) and the definition 
of pJ in [5b]. Further insight into this question can 
be obtained by measuring pD and pJ in '80PF3. 

'OIn relating the T' used here to the T' used in other works, 
one must first take into account the change in coordinate 
system pointed out in footnote 7. If this is done, then 
ryyYzf(here) = hxxrr (10) = ~,,,~'(11) = 4~,,,,'(12). Although 
the force-field value was used in the current work, the relation- 
ship to the definition of r,,,,' used in ref. 10 was established 
only after a correction to the original paper was made in [8] of 
ref. 10: T,,,:' = 49, rather than 29,. The assistance of Dr. J. G. 
Smith on this point was very helpful. 
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TABLE 8. Final determination of (Ao  - Bo)  from the 
Stark crossings (K = + 2 tt + 1 )  

'The estimated error in each entry Tor relative purposes is 
0.001% or 2 kHz.  The absolute error is O.OOZY, or 4 kHz.  

bThis is the conrribution of p, to ( A R ~ T " / ~ )  as calculated with 
b = 0.904(12) k H z  (see [181). 

FIG. 5. Spectrum for a Stark anticrossing taken with &just 
below gc. The value of the minimum separation v, was 
determined to be 57.64(66) kHz. Because the line is so close 
to the crossing, 1 av/a&] is small compared to Isc/ and the line 
width Av is narrower than in spectra taken far from &c. 

C. The Hyperfile Anticrossing: General Studies and 
Selection Rules 

All the hyperfine anticrossings listed in Table 4 
were studied in detail with B 6 10 pT. The hyperfine 
spectra observed were typically weaker than the 
stronger of the Stark spectra by a factor of 10 or 
more. The low value of B was selected in these 
initial experiments to avoid the intensity division 
produced by the very fast magnetic splitting. In  each 
case, the crossing field &, was measuted. T o  improve 
the accuracy, each measurement with one exception 
was made relative to  a convenient Stark 8,. The 
exception was the ( J  = 1) hyperfine avoided crossing 
for which no nearby Stark reference was available. 
Unfortunately, because of the difficulties pointed out 
in Sect. 2 0 ,  no information on AHyp could be 
extracted. Furthermore, although values of (Ao - 
Bo) were obtained in agreement with those deter- 

mined from the Stark anticrossings, the accuracy was 
not competitive. Serious attempts were made to  
follow the transitions close enough to 8, that the 
contribution from 7 in [lo] would become significant, 
but in each case 17 1 was too small relative to Av. 

All these hyperfine anticrossings were then studied 
with B 2 20 mT. Because the individual components 
were now even weaker. no a t t e m ~ t  was made to  
determine AHyp or to make precision measurements 
of (Ao - Bo). Effort was concentrated on checking 
the selection rules derived in Sect. 2 0  and summar- 
ized in Tables 3 and 4. All of the magnetic com- 
ponents listed in Table 4 were observed except the 
two marked with asterisks. The relative intensities 
obtained are given in Table 4. Because of the difficulty 
in optimizing &,, on such weak lines, these measure- 
ments must be regarded as estimates of the true 
relative strengths with an uncertainty the order of a 
factor of two. 

For the four cases in Table 4 in which more than 
one magnetic pair were observed in a single anti- 
crossing system, the relative intensities were pro- 
portional (within the rather large error) to  the ratio 
of the corresponding n's as predicted in Sect. 2 0 .  
For ( J  = 2,K = + 2  tt O,m, = f 2 ++ O), the agree- 
ment is illustrated in Fig. 7. All four magnetic com- 
ponents have about the same intensity with individu- 
ally optimized b,, and n is the same for both 
magnetic pairs. For ( J  = 1 ,K = f 1 tt O,tn, = +_ 1 
tt O), the g, and g, pairs were observed to be of 
equal strength, and the n-ratio for g, tog ,  is 3 :2. For  
both of the hybrid Stark-hyperfine cases, the hyper- 
fine satellites were - 118 the intensity of the pure 
Stark component, as expected (see Sect. 20 ) .  

The two "missing" magnetic components, both 
with lgl = g,, were expected to be very weak. The 
relative intensity predicted from the corresponding 
observed g, pair using the n-ratio is given in Table 4. 
Even with prior knowledge" of the optimum &,,, 
these require - 1 h of averaging to  see the line. For  
( J  = l,K = + 1 ++ O,m, = f 1 tt 0) where the g, 
pair was observed and is of about the same strength 
as the missing cases, the &,, used was first set at  the 
value for its g F  partners and this proved to be close 
to the optimum. When the same procedure was used 
for ( J  = 2,K = + 1 - O,m, = f 1  tt 0), it failed. 
Subsequent calculations showed that the &,, used 
was about a factor of four too low. 

For each hyperfine anticrossing system studied, a 
search was made for all conceivable magnetic com- 

u 

ponents other than those predicted. None were 

"In conventional mber work, a very high bRF can often be 
used to observe weak lines for the first time and then reduced 
later. In the anticrossing spectra, a variety of effects obscure 
the lines if 8.. is much larger than the optimum value. 
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FIG. 6. The determination of v, for the Stark crossing (J = 6, K = k 2  tt T l,nz,, = + 6  tt +6).  The experimental 
data were taken separately for each polarity of the C-field, the dots for positive polarity and the open circles for negative 
polarity. The solid curves are the least-squares fits, yielding v, = 181.04(68) and 181.25(83) kHz, respectively. The mean 
value of bc is 161 8.743 V/cm. 

I- 
ALL BELOW CROSSINGS 
4 SWEEPS EACH 

J - 2  1 

FIG. 7. Nortnnl spectrum for hyperfine anticrossing taken with & = 1362.4 V/cm and B = 24.4 mT. Each magnetic 
component has its own frequency scale, but the same intensity scale applies to the different sections. There are two pairs of 
magnetic components, one with 121 = (gF + g,) and one with 121 = 2gF. The ratio of the two splittings has been used to 
determine the sign of the rotational g-factors. 
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found. In view of the intensity problems just 
mentioned, this result cannot be taken as definitive 
proof that these other selection rules are forbidden. 
However, the selection rules derived in Sect. 2 0  are 
certainly consistent with all the experimental 
evidence. 

If a single hyperfine mechanism provides the 
mixing, then a measurement of the optimum &,, can 
provide a value for the corresponding coupling con- 
stant through [12]. This was done for the gF com- 
ponents of the first two systems listed in Table 4. This 
gave + ( c , , ~  + cZYF) = 4.8 and 4.3 kHz from the J = 1 
and 2 data, respectively. Such results can be very 
unreliable, particularly when Av is determined by 
field inhomogeneities. To  test the reliability, the 
same technique was applied to all the Stark systems 
studied, where the mixing is known from the 
measurement of p, It was found that the method 
was reliable to about a factor of two. To  be con- 
servative, however, the final value for &(cYzF + czyF) 
of 4.5 kHz should be regarded as an order of magni- 
tude estimate. This is in itself of considerable interest 
because no constant of this type has been measured 
before (to our knowledge). 

D. The Sigrz of the Rotational g-factors 
The absolute signs of g, and g l l  were determined 

by studying the hyperfine satellites of the hybrid 
system ( J  = 3,K = + 2  tt f l , n z J f l  tt T I ) .  A 
schematic plot of the energy levels is shown in Fig. 2. 
In a field of 40.185(18) mT, the splitting between the 
two magnetic components was 4655.0(2.0) kHz, so 
that lgcffl = 7.5985(47) nm. From [19], the rota- 
tional contribution g, to  (g,,,l is (19g, + 5g1,)/24. By 
using the values for the nuclear g-factors (24) and 
shielding (25-27) together with [19], it was found 
from this experimental value of (gcffl that g, = 
-0.0410(24) nm. From earlier work (9) which gave 
the magnitudes of g, and g l l  as well as showing 
(g,/gll) > 0, it was calculated that Ig,l = 0.04233(7) 
nm. The two magnitudes are in agreement. The 
negative sign for g, shows that g, and g l l  are both 
negative. This conclusion was confirmed by a similar 
study of the hyperfine system ( J  = 2,K = f 2  tt 
O,nzJ = f 2 ++ 0) using spectra such as that shown 
in Fig. 7. 

5. Conclusion 
The principal purpose of the present work was to 

develop a new method of measuring A, (or C,) in a 
symmetric rotor. OPF3 was selected for this initial 
study primarily for two reasons: the crossing fields 
are conveniently low and a precision comparison 
value was available5 from distortion moment 
spectroscopy (11). Because of the agreement for 

(A, - B,) to  within the current accuracy of 0.002x 
with the microwave value given in Table 1 and 
because of the internal consistency of the anticrossir~g 
data, the method is considered to  be now established. 

Several other techniques of measuring A ,  (or C,) 
with high precision have been developed over the 
past decade. A brief comparison with three of these 
has been given in ref. 1 : (I) distortion moment 
microwave spectroscopy; .(II) ' infrared studies of 
perturbation-allowed vibration-rotation transitions; 
(111) Raman spectroscopy. A fourth method is based 
on microwave studies of perturbation-allowed pure 
rotational transitions in excited vibrational states. A 
recent example is the determination (28) for NSF, of 
A, for both the (us = 1)and the (21, = I)  states. This 
approach can be used for molecules with even very 
large (A, - B,) and/or relatively small p. On the 
other hand, it requires an accidental near-degeneracy 
which permits the observation of (AK = L-3) tran- 
sitions whose frequencies are sensitive t o  A,. A very 
complex spectrum must be analysed and, to obtain 
A, (or C,) itself, a correction must be made. In spite 
of these difficulties, this technique is being rapidly 
developed and has been successfully applied to  a 
number of molecules. 

A fifth method involves the study (12) with laser- 
Stark spectroscopy of the same type of anticrossings 
as are investigated here with mber. The laser-Stark 
and beam techniques are similar in many respects, 
and it is not at all clear which will ultimately be the 
more powerful. With a fixed frequency laser, the 
electric field in the laser-Stark method must simul- 
taneously satisfy two conditions. First, it must shift 
the rotation-vibration transition in question so that 
the laser line is within the transition's Doppler 
profile. Second, it must bring the two anticrossing 
levels to  their crossing field. This difficulty will be 
overcome when suitable tunable lasers become 
available. The two methods are limited in different 
ways with regard to  the range of values of (A, - B,), 
p, and J that can be studied. In the laser Stark 
experiment of ref. 12, a larger mixing is required, in 
part because the line width is larger by a factor of - 10 and in part because the modulation frequency 
is higher (10 kHz as compared to  20 Hz). The two 
sets of anticrossings observed in ref. 12, both Stark, 
had lql = 831 kHzfor  J = 13 and 389 kHzfor J = 
10, as calculated from the current value of pD. On 
the other hand, the mber method is confined to 
rather lower J values. If adequate mixing is available 
for J = 2 (the lowest J that has a (AJ = 0) Stark 
anticrossing), then the laser-Stark experiment can 
go as high as 12 GHz in (A, - B,) for p = 1 D. For 
comparison, the beam experiment should be able to  
reach 5 GHz with the ( J  = I)  hyperfine anticrossing. 
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Both of these limits are set by current technical con- 
siderations and not by fundamental difficulties. As 
the two methods develop, they should complement 
each other rather well. 

Avoided-crossing spectroscopy has also been used 
to study spherical tops using a magnetic-resonance 
molecular-beam spectrometer (29). In this case, the 
difference in the Zeeman energies is used to cancel 
the difference in rotational energies. The systems 
investigated to date are three level problems which 
are hyperfine anticrossings if 6 = 0 and hybrid 
Stark-hyperfine anticrossings if 6 # 0. These experi- 
ments have yielded, for example, the distortion dipole 
moment and proton spin rotation constants of CH,. 

Now that the anticrossing mber method of mea- 
suring (A, - B,) in symmetric tops is established, 
the technique will be applied to a series of molecules 
with (A, - B,) or ( B ,  - C,) 5 5 GHz and p - 1 D. 
The method will also be used to investigate internal 
rotation, developing this aspect of the technique as 
first applied to CH,CF, (8). 
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Appendix: Matrix Elements of the Hyperfine 
Hamiltonian Off-diagonal in K 

The matrix elements of HHYp off-diagonal in K 
have been calculated in the high-field representation 
discussed in Sect. 2A. Although the basis functions $ 
have been discussed elsewhere (14, 30), the specific 
form adopted here will be summarized briefly so that 
full use can be made of the matrix elements in other 
applications. 

Here the first two factors are the phosphorus and 
fluorine spin functions. If IKI = 3N, then xF trans- 
forms by irreducible representation l- = A ,  and 
IF = 312. If IKI # 3N, l- = E and IF = 9. In the 
usual notation for writing the spin functions of the 
individual fluorine spins with the conventions of 
Condon and Shortley (31), 
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[A31 xFEvK(+, 4 )  = (l /$)[Pua + auP 
x exp (2nKi13) + upa exp (4nKi/3)] 

The functions for the other values of m ,  can be 
obtained by simple ladder operations. The last factor 
in [ A l l  is the rotational function. In the conventions 
defined by Edmonds (32),  

Except for the case K = 0 ,  the basis functions do 
not have A ,  or A ,  symmetry, but are a mixture. For 
K = 0 ,  + is of A ,  or A ,  symmetry (corresponding to 
J even and J odd, respectively). This behaviour is to 
be contrasted with that of the zero-field basis set 
where all the functions are of symmetry A ,  or A, .  

The methods used to calculate the matrix elements 
are essentially the same as those employed in refs. 14, 
30, and 33. The matrix elements diagonal in J,  1K1, 
and I ,  are given in refs. 14, 32, and 9 in a form 
consistent with the current work and are not repro- 
duced here. The matrix elements off-diagonal in K 
and I ,  (but diagonal in J )  are listed below. 

Fluorine Spin-Rotation Interaction 

[A51 = {$i(cYZF + cZyF)6(IK - K f ( , l )  + 4(cxxF - c ~ , " )  

where 

Phosphorus-Fluorine Spin-Spin Interaction 

[A61 (JK~,~,~,I,~~~~H,~~JJK'~,'I,~,'I,'~~) = {&i(d,;PF + dZyPF)6(IK - K11,1) + $(dx,PF - dyyPF)  

1 1 
x S(lK - K11,2))(- 1)"'(2J + 1) J ~ o I , ( I ,  + 1)(21p + 1 )  ( in, - rn; mF - md nz,' - m,  

where 

T P F  = J - K +  J - m,  + I ,  - m ,  + IF - m ,  + I,' + P. 
Fluorine-Fluorine Spin-Spin Interaction 

[A71 ( ~ l S m , l ~ m ~ ~ , m ~ l ~ , ~ ~ ~  J K ' ~ , ' I , ~ , ' I , ' ~ ~ )  = { t i ( d Y J F  + dZ,FF)6(lK - KtI , l )  + +(dXxFF - d y  y F F )  

x 6(1K - K1],2))6(mP,  m,')6(nzJ + m,,1?1,1 + m d ) ( -  1YF')(2J + 1 ) n  

2 " ) (  " 2 
inJ - m,' m, n m - m m F  

when T,, = z,  defined above. In these equations, it has nowhere been assumed that I ,  = &, so that the 
results can be applied directly to cases where the single on-axis spin is larger than $. 

The spin-rotation coupling constants are defined as the negatives of those derived by Flygare (34). The 
spin-spin constants can be expressed in a simple form if the electron-coupled contribution is dropped and if 
effects due to zero-point vibration and centrifugal distortion are neglected. The errors introduced should 
be small. 
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2 

[A8bl HdXX PF - d PF) = ~ P O P N  g ~ g ~  sin2  0, 
Y Y  + 15.50 kHz 

8nRpF3 
FF [A8c] +(dyl + dZyFF) = 0 

6.14 kHz 

Here RFF and RpF are the fluorine-fluorine and fluorine-phosphorus bond lengths, respectively. 0, is the 
angle between the P-0 and P-F bonds, corresponding to P in Fig. 1 of ref. 14; dFF is given in [A8d]. The 
one remaining constant 

PF - ~ o ~ ~ ~ g p g F . [ ~  - 3 Sin2 [Age] d - -, -2.51 kHz 
4nRpF3 

The numerical values given in [A81 were obtained using the structure in ref. I I 




