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The third order theory developed in a previous communication for a diatomic molecule in a 21 state is reanalyzed and
extended to inciude contributions due to interactions between rotational levels. The new approach was applied to the rote-
tional and hyperfine A-doubling spectrum of 14NO. In contrast to all previous theoretical investigations an excellent agree-
ment is found between the predicted spectrum and the very accurate experimental data.

A new set of Totational and hyperfine structure constants of 1¥NO was obtained.

1. Introduction

The studies of diatomic open-shell molecules have been performed on a number of molecules in the past years.
The rotational and hyperfine A-doubling spectra have been investigated mainly for molecules in a 211 state (LiO,
NQ, OH, SH). However the largest number of transition frequencies, and the most accurate data available for a
molecule in a 21 state are known for the NO molecule.

The rotational spectra of NO were observed by Gallagher and Johnson [1] and by Favero et al. [2]. The hyper-
fine A-doubling spectra (AJ = 0 transitions) of NO were observed by Neumann [3] and by Meerts and Dymanus
[4] (further referred to as R1) using the molecular beam electric resonance (MBER) method. The experimental
uncertainties of the MBER measurements were typically 1 kHz, but Meerts and Dymanus obtained accuracies of
0.2 kHz for a large number of transitions.

For the interpretation of the MBER spectra Meerts and Dymanus developed a perturbation theory up to third
order in fine and hyperfine structure {4]. In this theory the rotational quantum number J is treated as a good
quantum number and all interactions off-diagonal in J are neglected. In fact the hyperfine interaction is con-
sidered to be a small perturbation on the fine structure. In the Hund’s case (a) representation this approach results
ina 2 X 2 secular equation. The agreement between the theoretical and experimental frequencies was found to be
rather unsatisfactory. Differences up to 50 kHz were still present. An attempt to include the contributions off-
diagonal in J, which only arise from the hyperfine hamiltonian, using a rather tedious perturbation calculation
proposed by Freed [5] failed completely. As it turned out later on this perturbation calculation is incorrect.

In the present work the off-diagonal contributions in J are taken into account by setting up a large secular ma-
trix containing all couplings between different J-states and solving the secular problem by a numerical diagonalisa-
tion. The maximum dimension of the matrix is 2(27 + 1), where I is the nuclear quantum number { = 1 for 14NO).
There is no need to introduce extra molecular parameters.

A recalculation of the spectra of 14NO resulted in an excellent agreement between the experimental and the
calculated rotational and hyperfine spectra; practically all predicted transitions agree with the observed frequen-
cies within the experimental accuracies. ' ’
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. Only 4 short review of the applied theory and its nnphcatlons is given in this section. The hamiltonian for the -
- spectra of opei-shell diatomic molecules in the absence of external fields can be written as

H=H0+HF+th, - ’ (l)

where Hy is the non-relativistic hamiltonian for electronic energies in the Born—Oppenheimer approximation, and

Hp and H,;¢ describe the fine and hyperfine structure contributions, respectively. The explicit form of Hg and Hy,¢
- expressed in terms of operators can be found in a previous paper [6].

The coupling scheme for the electronic and rotational part of the wavefunctions used in the present calcula-
tions is the Hund’s case (a):
lzn;J)=-1—[UAzm.+_(—1)f~i/2|J—A—z—m], ' )

‘ V2
where Q = A + I is taken positive; A, Z, § is the projection on the molecular axis of the electronic orbital (L)
and spin (S) and of the total angular momentum (J), respectively. The functions of eq. (2) have a well defined
symmetry with respect to a reflection (g,,) of the coordinates and spins of all particles in a plane containing the
nuclei {4]:

P =25 0. @)

The_definition of the symmetrized functions of eq. (2) is slightly different from the one used in previous papers
[4,6]. The present definition simplifies the expressions for the matrix elements which are given below. The total
wavefuncnon 1’0 S JIF) including the nuclear part is obtained as a product of the electronic-rotational wavefunc-
tions l I, J) and the nuclear spin wavefunctions {IM;) according to the coupling scheme F =J + I. The wavefunc-
tions |2 II5, JIF) were used as a basis for a perturbation calculation of the various contributions to the energy.
Only the rotatxona] and hyperfine contribuiions are discussed in this paper.

An extension of the perturbation calculation up to third order in fine and hyperfine structure is performed for
NO by Meerts and Dymanus [4]. However, in those calculations the matrix elements between states with different
J have been neglected. This is correct for the fine structure effects because all matrix elements of Hg off-diagonal
in J are zero, but it is incorrect for the hyperfine structure. Fortunately no extra coupling constants are required
to include these contributions, because they can be described by the major terms of the hyperfine structure con-
taining both second and third order contributions. The relevant molecular parameters defined by Meerts and
Dymanus [4,6] are X1, X3, X3, X4, for the magnetic hyperfine contributions and {}, {5, and {3 for the electric
quadrupole contributions. The energy contributions via the matrix elements off-diagonal in J of the third order
effects are negligibly small and are not considered in the following.

“The hyperfine hamiltonian is invariant under o,, and so matrix elements between states with different symme-
try are zero. Obviously the hamiltonian H is diagonal jn F. The general matrix elements of the hyperfine structure
can be easily calculated using well known operator techniques. The results are:

Oty Iy IF My 218, I, TF)

Ji 1 J J, 1
=G(J1"12:I’F) {(‘1)12—1/2(_ 11 _2) 2X1 i(‘l)(_ll ___1_2 )\/2—)(2]

o heil2 B2 .
+Q(J1~J21LF)(—1) 2 1 5?1 > ) (4)
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Q(Jl,Jg,I,F)-( . 21(21-1) ) =D 210,

These equations reduce to the expressions given by Meerts and Dymanus [4,6] if J, is set equal to J,. The ex-
tension of the perturbation theory up to third order was performed following the method of R1. Because the
hyperfine hamiltonian mixes states with different J, J is strictly no longer a “good” quantum number. The good
quantum numbers are the parity of the state and the F quantum number. This requires two secular equations to
be solved for each F value: one for + symmetry and one for — symmetry. The maximum dimension of each secular
problem is 2(27 + 1). The secular matrix is obtained in three steps: (1) the spin—orbit and rotational contributions,
(2) the A-doubling up to third order are all taken as in R1 (the matrix elements off-diagonal in J are zero), and
(3) the hyperfine structure contributions are included as discussed in this paper. The step (1) requires three molec-
ular parameters: the spin—orbit coupling constant (4;), and the rotational constant (By,) for the 211, ;2 Bn,,.)
and the 211 (Bp,,) level. The rotational matrix element between the 211 j2 and the gHg, 12 level is defined by:

ClEd Mgl * W )= 3B, + Bry,) - DO+ )

The centrifugal distortion was included by taking the square of the rotational matrix and multiplying the result
by —Dyy (centrifugal distortion constant). A similar approach was followed by Almy and Horsfall {7} and by
Meerts and Dymanus {6] for the Hund’s case (a).

The contributions of the A-doubling up to third order can be described by four molecular parameters: a3, a,
@, and &g. The last two constants ¢4 and ag contain only third order effects. In R1 also a fifth A-doubling
parameter ag was obtained, which could be expressed in ag by the relation:

as = [By/(By —By)leg 8

with By and By, as the rotational constants of the 21T and 2 states, respectively.

The egs. (4), (5) and (6) were used to include the major hyperfine structure contributions. Of the third order
hyperfine terms only those matrix elements, which are diagonal in J are included, using the equations of R1. The
following parameters were involved X5, X, X7, Xg» X9s §4, and {5. However, as shown in R1 5 and x, could
not be determined independently from the spectra, only the linear combination x5 + x4.

3. Calculations

The secular matrix was calculated and diagonalized by a computer yielding the eigenvalues and the transition
frequencies. The constants were adjusted in a least squares method to fit the available experimental data of 4NO:
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Table 1 ’ Table 2

Hyperfine A-doubling transitions of 1NO in the 211, , state Molecular parameters of $NO as obtained in the present cal-
as observed with a molecular beam electric resonance spec- | culation 2)
. trometer ’

Quantity

J Y A F. Observed transition -

' (MHz2) Bp,, (MH2) 50844.97 (16) )
Bn3 n (MHz) 50850.92(18)
9/2 .oun 11/2 1863.878 (1) Dp {MHz) 0.185(16)
112 11/2 i1/2 2087.217(1) a3 (MHz) 89.01234(4)
11f2 13/2 132 2207.877(2) oy (MHz) 14192(2)
- L7 (kHz) 0.23(2)

ag (kHz) 0.024 (3)
x1  (MHz) 46.3300(2)
x2  (MHz) 56.2987(2)
X3 {MHz) 113.659(8)
X4 {MHz) -20.619(20)
xs + x7 (kHz) 24.5(6)
X6 (kHz) 0.06 (4)
X8 (kHz) 0.0(3)
xo  (kHz) _19G)
4 (MHz) ~1.857(1)
& (MHz) —1.866 (8)
t (MHZ) 11.580(12)
$4 (kHz) 0.0(2)
$s (kHz} 0.02)

a) Parameters taken from other souzces are Ay = 123.160 em
{81 and Bs = 59568.76 MHz [9].
) The uncertainties represent three standard deviations.

91 observed transitions in the frequency range from 0.6 MHz to 258 GHz, consisting essentially of four groups:

(2) 20 rotational transitions of th> J = 1/2 - 3/2 and the J = 3/2 > 5/2 within the 2II, 2 State as observed by
Gallagher and Johnson [1] with an accuracy of 250 to 500 kHz.

(b) 6 rotational transitions of the J = 3/2 = 5/2 states in the 2[!3 /o state. The measurements were performed
by Favero et al. [2] with an accuracy of 300 kHz.

(c) 25 hyperfine A-doubling transitions (AJ = 0) of the J = 1/2 through 11/2 states of the 21, J2 state as ob-
served in our laboratory [4]. Three unpublished transitions belonging to this group are given in table 1. The ex-
perimental uncertainties of most of these transitions (19) is less or equa to 1 kHz, while 12 of them are accurate
within 0.2 kHz.

(d) 40 AJ =0 transitions of the J = 3/2 through 17/2 states of the 211, /2 state, all obtained by Meerts and
Dymanus [4], most of them with uncertainties of 1 kHz.

A full description of the spectrum required 22 molecular constants. However, two of them — A; and By, —
had to be taken from other sources. )

The result of the least squares fii is excellent. All but three transitions can be predicted within their experi-
mental errors and a ? value of 50.6 is obtained for those 91 transitions. The 2 is defined by

R .
X = Q Wixp —Veat) 1OV, 7 ©)
Where_ v;lc and }zéxp are the ith calculated and experimental transition frequency, respectively, and Av' is the ex-

perimental uncertainty in the ith frequency.
The confidence level of the fit is 97%. The molecular parameters obtained are given in table 2. The error for
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each constant is equal to three standard deviations. One standard deviation is defined in the following way: if we
add to or substract from one of the constants determined in the least squares fit one siandard deviation and freely
adjust all the other constants the x2 value will increase by 1.0. This error definition is checked for each constant
and it was found that the positive and negative errors were equal.

The pure third order effects were essential to obtain a satisfactory agreement between the calculated and exper-
imental spectra, a neglect of these contributions resulted in a x2 of 8.5 X 104,

4, Conclusions

The third order perturbation calculation which includes terms off-diagonal in J provides an excellent descrip-
tion of the rotational and hyperfine A-doubling spectrum of the NO molecule, for which all the previous treat-
ments failed to calculate the very accurate MBER spectra within their experimental uncertainties. It is expected
that this approach is capable of explaining and reproducing the spectra of diatomic 2IT molecules to a high degree
of reliability. An interpretation of the parameters in terms of molecular properties (e.g., electronic charge distri-
butions) seems to be still rather complicated, because most of the fine and hyperfine structure parameters contain
second as well as third order contributions. The third order contributions are a result of the perturbation calcula-
tion and connect the ground electronic 211 state with a large number of excited electronic states. The pure second
order parameters are of interest because they contain direct information about the electronic charge distribution
in the molecule [6]. As can be seen from table 2 the third order contributions although necessary to reproduce
the experimental data, are rather small in NO. So the pure second crder parts of the parameters can be obtained
by neglecting the third order contributions and by increasing the errors somewhat.
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