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A Cavity Ring Down �CRD� absorption experiment is performed with a Free�Electron Laser
�FEL� operating in the ����� �m region� A short infrared pulse of approximately 	� ns
 sliced
from the much longer FEL pulse
 is used to measure CRD spectra of ethylene in two di�erent ways�
First
 �ordinary CRD spectra with a resolution determined by the bandwidth of the FEL ��� cm���
are recorded� Second
 Fourier Transform �FT� CRD spectra with a resolution that is in principle
determined by the FT�spectrometer are obtained by analyzing the light exiting the ring down cavity
with a FT�spectrometer while the FEL is operated in broadband mode�
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Since ���� when O�Keefe and Deacon reported the �rst
results of the Cavity Ring Down 	CRD
 absorption tech�
nique on the atmospheric bands of molecular oxygen in
the visible region of the spectrum ��� the spectral re�
gion in which CRD absorption spectroscopy has been
applied has been extended to either side� In ���� Mei�
jer et al� demonstrated CRD detection of the hydroxyl
radical 	OH
 in a �ame in the near�UV region of the
spectrum ��� Measurements on the Herzberg absorp�
tion system of molecular oxygen ��� measurements of the
absorbance of methyl radicals 	CH�
 in a hot��lament
reactor ��� and detection of trace amounts of 	atomic

mercury and ammonia �� have demonstrated the appli�
cability of CRD spectroscopy down to ��� nm� Using
a state�of�the�art narrowband tunable infrared 	IR
 laser
system� Rakestraw and co�workers demonstrated the �rst
CRD experiment in the IR spectral region out to ���� nm
��� As long as mirrors with a su�ciently high re�ectiv�
ity� detectors with a su�ciently fast time�response and
tunable 	pulsed
 light sources are available there is no
intrinsic limitation to the spectral region to which CRD
can be applied� CRD in the IR is of particular interest
since this is the energy range of molecular vibrations and
it yields a true molecular �ngerprint� Over the last years
Free�Electron Lasers 	FELs
 have become available to
users ������ Their wide and rapid continuous tunability
make them ideally suited for IR studies�
In this Letter we report on the exploration of the use

of a FEL for CRD experiments� The ����� �m spectral
range is selected as mirrors of su�cient quality and fast�
sensitive detectors are available for a reasonable price�
Ethylene� with its strong �� IR absorption around �����
�m is selected as test molecule� Both �ordinary� CRD
experiments� with a spectral resolution limited by the
bandwidth of the FEL� and Fourier Transform 	FT
�
CRD experiments with a superior spectral resolution�
limited in principle only by the FT�spectrometer ����

are reported on�

The experiments have been performed at the FEL user
facility FELIX 	�Free�Electron Laser for Infrared eXperi�
ments�
 in Nieuwegein� The Netherlands ������� FELIX
produces IR radiation that is continuously tunable over
the ����� �m 	������� cm��
 range with a minimum
achievable bandwidth 	FWHM
 of ���� �m at �� �m 	�
cm�� at ���� cm��
� In the present experiment FELIX
runs at a � Hz repetition rate� The light output consists
of so called macropulses of about � �s duration containing
�� mJ of energy� Each macropulse consists of a train of
micropulses which are between ���� to � ps long 	FWHM
at �� �m
 and are separated by � ns�

The experimental details for the CRD setup do not
di�er substantially from the setup we have been using
before ������ and a scheme of the experimental setup is
given in Figure �� The ring down cavity is formed by two
identical plano�concave mirrors with a diameter of ����
mm and a radius of curvature of ���� m placed a distance
d � ���� cm apart� The re�ection coatings are optimized
for � � ����� �m� and have a speci�ed re�ection coe��
cient R � ������ The ring down times thus expected for
the empty cavity are on the order of ��� ns� To be able
to use the FELIX pulse for CRD experiments it is impor�
tant to have the trailing �ank of the IR pulse decaying
faster than the typical photon�lifetime in the cavity� To
achieve this� the �semiconductor switching� technique is
applied� This technique is based on the dependence of
the re�ection and transmission properties of a material
on the density pro�le of free carriers within it ���� In
our case� the second�harmonic radiation of a short�pulse
Nd�YAG laser 	��� nm� ��� ps� �� mJ
 is used to pro�
duce a high density of free carriers in a Si�slab� thereby
temporarily changing its IR re�ection and transmission
characteristics�
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FIG� �� Schematic view of the experimental setup� A short 	� ns duration IR pulse is sliced out of the FELIX macropulse
and coupled into the ring down cavity� The light exiting the cavity is either measured directly or after passage through the
FT�spectrometer� In the inset a typical ring down transient of the empty cavity is shown�

In the experimental setup� the linearly polarized radia�
tion of the FEL is incident on the semi�conductor Si�slab
under Brewster angle 	��� � ���� cm��
� and passes
through the Si�slab in the absence of the Nd�YAG laser
pulse� During and shortly after the Nd�YAG laser pulse
the Si�slab becomes conducting� and a FEL pulse of ap�
proximately �� ns duration 	�� � �� �J pulse energy
 is
e�ciently re�ected from the Si�slab� This shortened IR
pulse is used for the CRD experiments� The IR pulse is
coupled into the cavity through one of the mirrors with
a weakly focusing mirror 	f � � m
� A long pass �lter
	��� �m cut�o� wavelength
 is used to prevent the higher
harmonics that might be present in the FELIX�beam
from entering the cavity� The time dependence of the
light intensity inside the cavity is monitored by detection
of the light that leaks out of the cavity through the other
mirror� This light is either detected directly or after pas�
sage through a FT�spectrometer 	Bruker IFS ��v� with
step�scan option
 using a liquid�nitrogen cooled HgCdTe
	MCT
 detector 	HCT����C� Braseby� UK
� with a re�
sponse time of about �� ns� The signal of the detector is
ampli�ed and digitized with a fast 	��� Ms�s
 and high
resolution 	�� bit
 digital oscilloscope 	LeCroy ����
�
After averaging of the ring down transients over a pre�
de�ned number of shots 	�����
 on the �� bit on�board

memory of the oscilloscope the data are transferred to a
PC for extraction of the frequency dependent ring down
times ������ In the inset of Figure � a typical ring down
transient measured with the MCT�detector directly be�
hind the 	empty
 ring down cavity is shown�

In Figure �a the CRD spectrum of � atmosphere of ���
ppb C�H� in argon as measured with the MCT�detector
directly behind the ring down cavity is shown� FELIX
is stepped in ���� �m steps over the �������� �m region
with a bandwidth of approximately ���� �m� At every
wavelength position �� transients are averaged� The fre�
quency dependent ring down time �	�
 is extracted from
the data points in a time�interval of typically three ��e
decay times� i�e� out to about � �s� Some ��� data
points prior to the onset of the ring down transient are
used to accurately determine the baseline� The averaged
baseline is subtracted from the transient and the natu�
ral logarithm of the data is �t to a straight line using
a least�squares weighted �tting algorithm ��� In Fig�
ure �a the thus determined value of ��c�	�
 	where c is
the speed of light
� which is identical to an o�set given
by 	� � R
�d plus the frequency dependent absorption
coe�cient �� � is plotted as a function of wavelength�
The curved background in this Figure is caused by the
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frequency�dependent mirror�re�ectivity R� which has a
maximum value of R � ����� at ���� �m� For compar�
ison� the FTIR spectrum of � atmosphere of ��� ppm
C�H� in argon� measured in a �� cm long cel� is shown
in Figure �b� Whereas the resolution in the FTIR spec�
trum is determined by the congestion of the molecular
spectrum to be around ��� cm�� for the central Q�branch
and ��� cm�� for the other Q�branches of the �� out�of�
plane bending mode� the resolution in the CRD spectrum
is limited by the linewidth of FELIX to � � cm���
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FIG� 	� �a� The CRD spectrum of � atmosphere of �	� ppb
C�H� in Ar
 measured via �ordinary CRD using FELIX with
a bandwidth of � cm��
 and �b� the FTIR spectrum of ���
ppm C�H� in Ar in a 		 cm long cell�

Due to the large mismatch in bandwidth between the
light source and the absorber� it is di�cult to extract re�
liable absorption coe�cients from these CRD spectra as
line�center saturation e�ects are hard to be completely
avoided without losing the signal alltogether ������

We have recently demonstrated that the sensitivity of
the CRD absorption detection method can be combined
with the multiplex advantage of FT�spectroscopy� In
such a FT�CRD setup accurate absorption information
can be extracted even when a broadband excitation pulse
is being used� as the spectral resolution that is obtained
is in principle only limited by the resolution of the FT�
spectrometer ���� In applying the FT�CRD detection
method in combination with FELIX� it is important to
note that there is phase�coherence between the single mi�
cropulses within the sliced �� ns IR pulse ���� In the
present FT�CRD experiment FELIX is operated with a

bandwidth of approximately �� cm��� and is centered
around the main Q�branch of ethylene at ����� �m� The
time dependence of the light intensity exiting the cav�
ity and passing through the FT�spectrometer� I	�� t
� is
measured as a function of the path�length di�erence �
between the arms of the interferometer� At every mirror
position �� transients� each recorded over � �s� are aver�
aged and transferred to the PC� A complete measurement
cycle consists of the recording of transients I	�� t
 at typ�
ically ��� mirror positions� At the end of the measure�
ment� the data are rearranged such that arrays recorded
at identical time points but at di�erent mirror positions
are formed� Thus full interferograms� measured at a spe�
ci�c time point are obtained� These interferograms are
Fourier transformed to obtain the spectral intensity dis�
tribution at this point in time� This process is repeated
for every time point at which the transients are recorded
���� The data points belonging to the same frequency
in the di�erent spectra� are �tted to an exponentially
decaying function of time� The resulting decay time is
calculated as a function of frequency ����

In Figure �a ��c�	�
 is plotted as a function of fre�
quency� The width of the central Q�branch is ��� cm���
about an order of magnitude smaller than the width of
the spectral pro�le of FELIX� represented by the dashed
curve in Figure �a� The same part of the spectrum of
ethylene measured with the FTIR spectrometer on a
sample with a �� times larger line�integrated absorption�
is shown for comparison in Figure �b� The noise in the
FT�CRD spectra is mainly due to �uctuations in the
spectral intensity distribution of the light source during
the experiment ���� The linewidth of the transitions
is determined by the Doppler and pressure broadening
of the ethylene�argon mixture in the ring down cell in
combination with the spectral congestion�

In conclusion� we have succesfully demonstrated the
use of a FEL for CRD absorption spectroscopy� Prob�
lems associated with the rather large bandwidth of FELs
can be circumvented if spectral analysis of the light that
leaks out of the ring down cavity is performed� as in the
FT�CRD experiment demonstrated here� Full advantage
of the unique features of CRD with FELIX is only taken
if experiments are performed throughout the complete
����� �m tuning range� using absorption detection of
transient species produced in a repetitive pulsed manner
or if sensitive kinetics measurements are being performed
����
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FIG� �� �a� The FT�CRD spectrum of � atmosphere of �	�
ppb C�H� in Ar together with the spectral intensity pro�le of
the FELIX pulse �dashed�
 compared to �b� the FTIR spec�
trum of ��� ppm C�H� in Ar in a 		 cm long cell�
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