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Molecular identification in 
metabolomics using infrared ion 
spectroscopy
Jonathan Martens  1, Giel Berden  1, Rianne E. van Outersterp1, Leo A. J. Kluijtmans2, Udo F. 
Engelke2, Clara D. M. van Karnebeek3, Ron A. Wevers2 & Jos Oomens  1,4

Small molecule identification is a continually expanding field of research and represents the core 
challenge in various areas of (bio)analytical science, including metabolomics. Here, we unequivocally 
differentiate enantiomeric N-acetylhexosamines in body fluids using infrared ion spectroscopy, 
providing orthogonal identification of molecular structure unavailable by standard liquid 
chromatography/high-resolution tandem mass spectrometry. These results illustrate the potential of 
infrared ion spectroscopy for the identification of small molecules from complex mixtures.

The characterization of metabolites in a biological system, metabolomics, is used for biomarker identification 
related to many diseases, including cancer1, Alzheimer’s disease2, inborn errors of metabolism3, 4, and others. 
Increasingly, untargeted high-resolution mass spectrometry (MS) plays a leading role in the identification of 
small-molecule metabolites, such as organic (amino) acids, saccharides, and other biomarkers. However, in many 
cases definitive identification of molecular structures is difficult using standard MS-based methods alone and 
orthogonal techniques are required. This can be exemplified by focusing on saccharides, which play an important 
role in various biochemical processes including the regulation of biochemical pathways and cellular interaction. 
Saccharides exhibit uniquely complex structural diversity, largely due to their enantiomeric building blocks which 
are isobaric (identical m/z) and thus challenging to characterize by mass spectrometry5, 6. These building blocks 
(monosaccharides), such as hexoses, N-acetylhexosamines and deoxyhexoses can be distinguished from each 
other based on their unique m/z values, but the actual identity of the hexose or N-acetylhexosamine monosaccha-
ride itself is difficult to obtain and must often be inferred by assumptions based on glycan biosynthetic principles7.

Recently, our group discovered N-acetylmannosamine (ManNAc) as a biomarker for NANS-deficiency8, a 
new inborn error of metabolism in sialic acid metabolism. However, the differentiation of N-acetylmannosamine 
from other possible enantiomeric N-acetylhexosamines found at the same m/z, is impossible using standard 
operating HPLC-MS/MS protocols in most bioanalytical laboratories (including our own), as they cannot be sep-
arated using reversed-phase chromatography and have identical MS/MS fragmentation spectra. Indeed, for the 
definitive identification of ManNAc from patient body fluids, it was necessary to use NMR techniques requiring 
significantly larger sample volumes and having significantly lower sensitivity than MS-based methods8. Previous 
studies have demonstrated the ability to distinguish monosaccharides using MS alone, but have mainly relied 
on either following complex MS>2 dissociation channels, often based only on differences in the relative peak 
intensities of common fragmentation channels9–11, or derivatization schemes that are difficult to apply to complex 
biological samples12, 13.

Infrared ion spectroscopy (IR-IS) has seen widespread use over the past decade for the identification of (bio)
molecular structures in the setting of academic physical chemistry labs14–22. Using a tuneable infrared laser such 
as the FELIX IR free electron laser19, 23, an IR spectrum can be generated for any m/z peak isolated from the mass 
spectrum. Here, we demonstrate the use of IR-IS to distinguish three N-acetylhexosamines directly from urine 
and cerebrospinal fluid (CSF) without any sample preparation (aside from dilution) or chromatographic sepa-
ration. This is the first demonstration of the use of IR-IS for the identification of small molecules from complex 
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mixtures. These results demonstrate the potential and natural extension of IR-IS to applied (bio)analytical 
chemistry.

IR-IS and simple direct infusion electrospray ionization (ESI) is used in a modified quadrupole ion trap mass 
spectrometer to demonstrate the identification of ManNAc in the patient’s body fluid samples and its distinc-
tion from the enantiomeric N-acetylhexosamines shown in Fig. 1. This approach is largely enabled by recent 
advances in experimental sensitivity and efficiency that allow us to measure IR spectra for ions at concentrations 
down to the low nanomolar range, consuming less than <50 μL of solution per IR spectrum23. Although the 
N-acetylhexosamines discussed here cannot be separated by the standard HPLC protocols in our laboratory, this 
sensitivity and efficiency generally allows us to measure an IR spectrum of ions generated from a collected HPLC 
fraction.

Results and Discussion
In Fig.  1, we observe the level of m/z 244, corresponding to the sodium adduct [M + Na]+ of an 
N-acetylhexosamine, in the patient body fluids to be elevated in comparison to a control CSF sample (Fig. 1 pan-
els (a) CSF-control vs. (b) CSF-patient and (c) urine-patient). Ions at m/z 244 are mass isolated and subsequently 
irradiated in situ with the tuneable infrared radiation of the IR-FEL to generate their infrared spectrum (black), 
shown in panel (d). Photodissociation occurs when the laser wavelength is resonant with one of the vibrational 

Figure 1. Experimental approach of IR-IS, combining mass spectrometry with infrared spectroscopy for 
metabolite identification. In panels (a–c), grey spectra are full +ESI MS spectra of body fluid samples and 
black spectra are generated after isolation of ions at m/z 244. Panel (a) shows the MS spectrum of a control CSF 
sample demonstrating the absence of ions corresponding to the m/z value expected for ManNAc ([M + Na]+ 
m/z 244), the targeted biomarker in these experiments. Panels (b) and (c) contain MS spectra generated from 
(b) a CSF sample and (c) a urine sample from a patient having NANS deficiency. Panel (d) illustrates the mass 
isolation of ions at m/z 244, and the subsequent measurement of their IR spectrum in the ion trap (black trace). 
In panel (e), the route to identification is achieved via IR spectral match between the spectrum measured from 
the patient sample (black in all graphs) and reference spectra generated for the known model compounds of 
alternative N-acetylhexosamines. The IR spectra serve as structural signatures, in this case providing clear 
identification of the species at m/z 244 from the patient sample as ManNAc by spectral match with the reference 
IR spectrum (red).
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frequencies of the trapped ions, generating a fragment peak(s) in the mass spectrum indicative of IR absorption. 
The fragmentation yield is monitored while the frequency of the laser is scanned24. In the final step, identification 
of the ions at m/z 244 from the body fluid sample is achieved by comparison with reference IR spectra obtained 
through analogous measurements for standard solutions of known reference compounds.

Panel (e) of Fig. 1 presents these comparisons where the IR spectrum of the ions at m/z 244 measured 
from the patient body fluid (black all graphs) can clearly be assigned to N-acetylmannosamine (middle, red) 
and not to two other reference IR spectra belonging to alternative N-acetylhexosamine model compounds, 
N-acetylgalactosamine (green trace) and N-acetylglucosamine (blue trace). Figure S1 demonstrates that GlcNAc 
and GalNAc are also distinguishable from each other on the basis of their IR spectra. Since the presumably high 
levels of sodium in the body fluids result in observation of exclusively the sodium adduct of ManNAc, we gener-
ated the sodium adduct for the model compounds as well by addition of 10−6 M Na+ to the reference solutions.

In addition to identification based on matching to reference measurements from model compounds, basic 
functional group information is also easily inferred from the IR spectra of unidentified ions in a mass spec-
trum. For example, the two features at approximately 1500 and 1675 cm−1 correspond to C-N and C = O 
stretch vibrations, respectively indicating the presence of these functional groups in the molecular structure of 
the mass-isolated ions. For the case of an unknown metabolite where reference compounds are not available, 
this gives information related to chemical structure which could help narrow down a list of database matches 
for isobaric species, for example unmodified or phosphorylated saccharides do not feature IR bands above 
1500 cm−1 (except H-stretches normally found above 2800 cm−1). Comparison against predicted IR spectra from 
quantum-chemical calculations have the potential to further enhance the structural information extracted and 
hence further help narrow down possible database matches.

The route to identification demonstrated in Fig. 1 is based on clear but modest differences in the IR spectra 
of the different reference compounds. Figures S2–S4 demonstrate the high degree of reproducibility of IR-IS 
measurements, over repeated scans, from different sample matrices (urine and CSF) and with varying concen-
tration, providing clear validation of the spectral match in Fig. 1. In order to quantify the reproducibility of these 
measurements, Fig. 2 presents a comparison of the standard deviation in peak areas of IR yields measured for 
a well-known model system23, the protonated amino acid tryptophan (m/z 205). Five identically repeated IR-IS 
measurements (in this case using a table-top optical parametric oscillator (OPO) mid-IR laser system in the 
3500–3590 cm−1 spectral region) were made at each of six concentrations between 1 nM and 100 μM. We com-
pare the standard deviation of the IR peak areas between the five measurements (as a percentage of the mean 
peak area) and find less than 5.5% deviation over the full concentration range. Note that by considering the 
fragmentation yield as the IR intensity (see methods section), we compare the fraction of ions that dissociate at 
each frequency point, making the measurements independent of the total ion count and hence of concentration.

While the IR-FEL is unique in its wide tuneability and high output power, table-top mid-IR laser systems 
(especially OPOs) can also be used (especially in the ~2800–3800 cm−1 spectral region where they probe hydro-
gen stretching vibrations) for IR-IS experiments18, 23, 25. However, the output power of OPOs is substantially lower 
than that of IR-FELs, somewhat limiting their applicability to ions having a relatively low dissociation threshold. 
Figure S5 presents the distinction of the three N-acetylhexosamines discussed above using an OPO mid-IR laser 
system, demonstrating that they are as well each differentiated by their H-stretching vibrations in the 3200–
3800 cm−1 region.

The results presented above demonstrate the (bio)analytical potential of IR-IS for the identification of small 
molecules from complex matrices in analytical mass spectrometry, offering a new orthogonal characterization 
technique. Additionally, we envision the workflow demonstrated here to be applicable in a variety of fields, 
including plant metabolomics, pharmacology, environmental sciences, and others. In medicine, early diagnosis 
enabling treatments of genetic conditions such as NANS deficiency is essential. Thus with advances in therapies, 
it is clear that IR-IS will play an important role for the identification of conditions with challenging biomarkers.

Figure 2. Standard deviation of the IR peak area as a percent of the mean value. Five repeated measurements 
over the 3500–3590 cm−1 range for the protonated amino acid tryptophan, a well understood system studied 
previously23, are presented. The standard deviation of IR peak area over the range of 100 μM – 1 nM has a 
maximum of 5.5%.

http://S1
http://S2
http://S4
http://S5
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Methods
Infrared Ion spectroscopy. IR-IS measurements were performed using a modified quadrupole ion trap 
mass spectrometer (Bruker, amaZon Speed ETD) that has been coupled to the IR beam line of the FELIX free 
electron laser, illustrated in Fig. 319, 23. The FELIX laboratory (http://www.ru.nl/felix/) operates as an interna-
tional user facility where beam time is awarded through biannual calls for proposals open to external researchers. 
Hardware modifications to the mass spectrometer to give optical access to the trapped ions include the intro-
duction of a new ring electrode with 3 mm holes at its top and bottom, the introduction of mirrors below the 
trap to guide the IR-laser beam back out of the vacuum housing (onto a pyroelectic sensor measuring the pulse 
energy) and IR-transparent optical windows in the vacuum chamber. Details of these modifications and of soft-
ware operation have been previously reported elsewhere23. Body fluid samples were diluted to give ManNAc con-
centration at ~10−6 M in order to sufficiently dilute the higher concentration components in the sample matrix, 
while maintaining a favourable signal to noise ratio. The diluted samples were directly electrosprayed (+ESI) to 
produce IR/mass spectra. All [M + Na]+ ions for reference measurements were generated by +ESI from solutions 
of 10−6–10−8 M (in 50:50 acetonitrile:H2O) containing NaCl at 10−6 M. Reference compounds and electrospray 
solvents were obtained from Sigma-Aldrich.

For these experiments, the FELIX free electron laser provided infrared radiation in the 800–1800 cm−1 range 
as 5 μs macropulses (at a 10 Hz repetition rate) of 30–60 mJ per pulse (the bandwidth is ~0.4% of the center 
frequency). A table top infrared optical parametric oscillator (OPO) provides infrared radiation in the 3200–
3800 cm−1, producing 10–15 mJ per 5 ns pulse with a bandwidth of 3 cm−1 (LaserVision, USA). When the IR 
photons are resonant with a vibration in the trapped ions the absorption occurs leading to an increase in the 
internal energy of the ion. Aided by intramolecular vibrational redistribution of the absorbed energy, the ions 
dissociate once they reach the limit of the dissociation channel with the lowest threshold. Typically, after a single 
macropulse, dissociation occurs and generates a frequency-dependent fragment ion signal in the mass spectrum. 
By relating the parent and fragment ion intensities (yield = ΣI(fragment ions)/ΣI(all ions)) as a function of the 
IR frequency, an infrared vibrational spectrum is generated. The yield at each IR point is obtained from typically 
four to eight averaged mass spectra and is linearly corrected for laser power; the frequency is calibrated online 
throughout the measurements using a grating spectrometer (IR-FEL) or a wavemeter (OPO).
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